Leukemia, the malignancy of the hematopoietic system accounts for 10% of cancer cases with poor overall survival rate in adults; therefore, there is a high unmet medical need for the development of novel therapeutics. Eight imidazo[1,2-]pyrazole-7-carboxamides have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4), biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro. Imidazo[1,2-]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with different potential.
View Article and Find Full Text PDFThis work establishes the zebrafish embryo model for ionizing radiation (IR) modifier research and also evaluates the protective effect of l-alpha glycerylphosphorylcholine (GPC). Embryos were exposed to a single-fraction whole-body gamma irradiation (5, 10, 15, and 20 Gy) at different postfertilization time points and were serially assessed for viability and macro- and micromorphologic abnormalities. After toxicity evaluation, 194 μM of GPC was added for certain groups with 3-h incubation before the radiation.
View Article and Find Full Text PDFWe and others have recently shown cisplatin resistance-related protein 9 (CRR9)/Cleft Lip and Palate Transmembrane 1-Like (CLPTM1L) to affect survival and proliferation in lung and pancreatic tumor cells. Our research has indicated that CLPTM1L affects multiple survival signaling pathways in tumor cells under oncogenic, genotoxic, and microenvironmental stress. We have confirmed the association of CLPTM1L with pancreatic cancer by demonstrating overexpression of CLPTM1L in pancreatic tumors and poor survival in patients with high tumor expression of CLPTM1L.
View Article and Find Full Text PDFTranslational research in radiation oncology is important for the detection of adverse radiation effects, cellular responses, and radiation modifications, and may help to improve the outcome of radiation therapy in patients with cancer. The present study aimed to optimize and validate a real‑time label‑free assay for the dynamic monitoring of cellular responses to ionizing radiation. The xCELLigence system is an impedance‑based platform that provides continuous information on alterations in cell size, shape, adhesion, proliferation, and survival.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2015
Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes.
View Article and Find Full Text PDFBackground: Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation.
Methods: We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level.
Ionizing radiation plays a major role in the treatment of brain tumors, but side-effects may restrict the efficacy of therapy. In the present study, our goals were to establish whether the administration of L-alpha-glycerylphosphorylcholine (GPC) can moderate or prevent any of the irradiation-induced functional and morphological changes in a rodent model of hippocampus irradiation. Anesthetized adult (6-weeks-old) male Sprague-Dawley rats were subjected to 40 Gy irradiation of one hemisphere of the brain, without or with GPC treatment (50 mg/kg bw by gavage), the GPC treatment continuing for 4 months.
View Article and Find Full Text PDFInt J Radiat Biol
January 2014
Purpose: To detect the possible biochemical signs of inflammatory activation in the peripheral circulation in a rodent model of hippocampus irradiation, and to examine the effects of L-alpha-glycerylphosphorylcholine (GPC) in this experimental protocol.
Materials And Methods: Anesthetized Sprague-Dawley rats were subjected to 40 Gy cobalt irradiation of both hemispheres of the hippocampus, with or without GPC treatment (50 mg/kg intravenously (i.v.
Purpose: Our aim was to establish an effective small-animal focal brain radiation model for research on brain injuries.
Material And Methods: Groups of up to six rats were exposed to a range of doses from 120-40 Gy, at 10 intervals of a 6 MeV electron beam. Open-field motor functions and water maze learning-memory tests were performed after the irradiation at two-week intervals.