Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking.
View Article and Find Full Text PDFIn the last years, extracellular vesicles (EVs), secreted by various cells and body fluids have shown extreme potential in biomedical applications. Increasing number of studies suggest that a protein corona could adhere to the surface of EVs which can have a fundamental effect on their function, targeting and therapeutical efficacy. However, removing and identifying these corona members is currently a challenging task to achieve.
View Article and Find Full Text PDFSelf-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif () and coupled it to a spiropyran photoswitch.
View Article and Find Full Text PDFAnticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects to ACP action and to therapeutic developments.
View Article and Find Full Text PDFSelf-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies - key areas for biomedical and technological applications.
View Article and Find Full Text PDFBesides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with antimicrobial effect (MAPs) and red blood cell derived EVs (REVs) and we demonstrate that they have the capacity to remove members of the protein corona from REVs even at lower than 5 μM concentrations. In case of REVs, the Soret-band arising from the membrane associated hemoglobins allowed to follow the detachment process by flow-Linear Dichroism (flow-LD).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2020
A peculiar polygonal protein scaffolding that resembles to spectrin-based skeleton of red blood cells can be reconstructed on the outer surface of vesicle-like nanoerythrosomes. The approximately 130 nm sized nanoerythrosomes are produced from red blood cell ghosts by addition of phospholipids (dipalmitoylphosphatidylcholine, DPPC). The scaffolding, constructed from the structural proteins of the cell membrane skeleton, covers the whole object resulting an enhanced stiffness.
View Article and Find Full Text PDF1,4- and 1,5-Disubstituted triazole amino acid monomers have gained increasing interest among peptidic foldamers, as they are easily prepared via Cu- and Ru-catalyzed click reactions, with the potential for side chain variation. While the latter is key to their applicability, the synthesis and structural properties of the chiral mono- or disubstituted triazole amino acids have only been partially addressed. We here present the synthesis of all eight possible chiral derivatives of a triazole monomer prepared via a ruthenium-catalyzed azide alkyne cycloaddition (RuAAC).
View Article and Find Full Text PDFFoldamers are non-natural oligomers that mimic the structural behaviour of natural peptides, proteins and nucleotides by folding into a well-defined 3D conformation in solution. Since their first description about two decades ago, numerous studies have been undertaken dealing with the design, synthesis, characterization and application of foldamers. They have huge application potential as antimicrobial, anticancer and anti-HIV agents and in materials science.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder-to-order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded peptide conformations have recently been reported. Thus, the function of AMPs and of natural host defence peptides can be significantly affected by the local complex molecular environment in vivo; nonetheless, this area is hardly explored.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are currently in scientific focus, as they have great potential to revolutionize the diagnosis and therapy of various diseases. However, numerous aspects of these species are still poorly understood, and thus, additional insight into their molecular-level properties, membrane-protein interactions, and membrane rigidity is still needed. We here demonstrate the use of red-blood-cell-derived EVs (REVs) that polarized light spectroscopy techniques, linear and circular dichroism, can provide molecular-level structural information on these systems.
View Article and Find Full Text PDFThe in vivo biodistribution of liposomal formulations greatly influences the pharmacokinetics of these novel drugs; therefore the radioisotope labeling of liposomes and the use of nuclear imaging methods for in vivo studies are of great interest. In the present work, a new procedure for the surface labeling of liposomes is presented using the novel Tc-tricarbonyl complex. Liposomes mimicking the composition of two FDA approved liposomal drugs were used.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2015
Colloidal stabile nanoerythrosomes with 200 nm average diameter were formed from hemoglobin-free erythrocyte ghost membrane via sonication and membrane extrusion. The incorporation of extra lipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), added to the sonicated ghosts, caused significant changes in the thermotropic character of the original membranes. As a result of the increased DPPC ratio the chain melting of the hydrated DPPC system and the characteristic small angle X-ray scattering (SAXS) of the lipid bilayers appeared.
View Article and Find Full Text PDFCarbon nanotubes are promising new tools in biomedicine but they may have yet some unknown influences on the organism. In the present study, the acute effect of solubilized, multi-walled carbon nanotubes (MWCNTs) on basic neuronal functions was examined. Rat brain slices were treated in vitro with nanotube-containing colloid solutions at concentrations of 100-800 μg/ml and evoked field potentials were recorded from the somatosensory cortex and hippocampus.
View Article and Find Full Text PDFThe 6-coordinate dioximatomanganese(II) complex [Mn(HL)(CH3OH)]+ (2, where H2L is [HON=C(CH3)C(CH3)=NCH2CH2]2NH), formed by instant solvolysis of [Mn2(HL)2](BPh4)2 (1) in methanol, accelerates the triethylamine (TEA)-catalyzed oxidation of 3,5-di-tert-butylcatechol (H2dtbc) by O2 to the corresponding o-benzoquinone. Significantly, 2 alone has no catalytic effect. The observed rate increase can be explained by the interaction of 2 with the hydroperoxo intermediate HdtbcO2- formed from Hdtbc- and O2 in the TEA-catalyzed oxidation.
View Article and Find Full Text PDFDioximato-cobalt(II), -iron(II) and -manganese(II) complexes (1)-(6), acting as functional catecholase and phenoxazinone synthase models, exhibit a deuterium kinetic isotope effect predicted by theory (k4H/k4D < or = 3) in the catalytic oxidative dehydrogenation of 3,5-di-tert-butylcatechol and 2-aminophenol by O2. KIEs in the range of (k4H/k4D approximately 1.79-3.
View Article and Find Full Text PDF