Building medical microrobots from the body's own cells may circumvent the biocompatibility concern and hence presents more potential in clinical applications to improve the possibility of escaping from the host defense mechanism. More importantly, live cells can enable therapeutically relevant functions with significantly higher efficiency than synthetic systems. Here, live immune cell-derived microrobots from macrophages, i.
View Article and Find Full Text PDFWhile recent wireless micromachines have shown increasing potential for medical use, their potential safety risks concerning biocompatibility need to be mitigated. They are typically constructed from materials that are not intrinsically compatible with physiological environments. Here, we propose a personalized approach by using patient blood–derivable biomaterials as the main construction fabric of wireless medical micromachines to alleviate safety risks from biocompatibility.
View Article and Find Full Text PDFSoft untethered micromachines with overall sizes less than 100 μm enable diverse programmed shape transformations and functions for future biomedical and organ-on-a-chip applications. However, fabrication of such machines has been hampered by the lack of control of microactuator's programmability. To address such challenge, we use two-photon polymerization to selectively link Janus microparticle-based magnetic microactuators by three-dimensional (3D) printing of soft or rigid polymer microstructures or links.
View Article and Find Full Text PDFSmall-scale soft-bodied machines that respond to externally applied magnetic field have attracted wide research interest because of their unique capabilities and promising potential in a variety of fields, especially for biomedical applications. When the size of such machines approach the sub-millimeter scale, their designs and functionalities are severely constrained by the available fabrication methods, which only work with limited materials, geometries, and magnetization profiles. To free such constraints, here, we propose a bottom-up assembly-based 3D microfabrication approach to create complex 3D miniature wireless magnetic soft machines at the milli- and sub-millimeter scale with arbitrary multimaterial compositions, arbitrary 3D geometries, and arbitrary programmable 3D magnetization profiles at high spatial resolution.
View Article and Find Full Text PDFMagnetically actuated and controlled mobile micromachines have the potential to be a key enabler for various wireless lab-on-a-chip manipulations and minimally invasive targeted therapies. However, their embodied, or physical, task execution capabilities that rely on magnetic programming and control alone can curtail their projected performance and functional diversity. Integration of stimuli-responsive materials with mobile magnetic micromachines can enhance their design toolbox, enabling independently controlled new functional capabilities to be defined.
View Article and Find Full Text PDFThe structural design parameters of a medical microrobot, such as the morphology and surface chemistry, should aim to minimize any physical interactions with the cells of the immune system. However, the same surface-borne design parameters are also critical for the locomotion performance of the microrobots. Understanding the interplay of such parameters targeting high locomotion performance and low immunogenicity at the same time is of paramount importance yet has so far been overlooked.
View Article and Find Full Text PDFUntethered mobile microrobots have the potential to leverage minimally invasive theranostic functions precisely and efficiently in hard-to-reach, confined, and delicate inner body sites. However, such a complex task requires an integrated design and engineering, where powering, control, environmental sensing, medical functionality, and biodegradability need to be considered altogether. The present study reports a hydrogel-based, magnetically powered and controlled, enzymatically degradable microswimmer, which is responsive to the pathological markers in its microenvironment for theranostic cargo delivery and release tasks.
View Article and Find Full Text PDFProgramming materials with tunable physical and chemical interactions among its components pave the way of generating 3D functional active microsystems with various potential applications in tissue engineering, drug delivery, and soft robotics. Here, the development of a recapitulated fascicle-like implantable muscle construct by programmed self-folding of poly(ethylene glycol) diacrylate hydrogels is reported. The system comprises two stacked layers, each with differential swelling degrees, stiffnesses, and thicknesses in 2D, which folds into a 3D tube together.
View Article and Find Full Text PDFProgramming local chemical properties of microscale soft materials with 3D complex shapes is indispensable for creating sophisticated functionalities, which has not yet been possible with existing methods. Precise spatiotemporal control of two-photon crosslinking is employed as an enabling tool for 3D patterning of microprinted structures for encoding versatile chemical moieties.
View Article and Find Full Text PDF