Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males.
View Article and Find Full Text PDFAbuse, neglect, and other forms of early life stress (ELS) significantly increase risk for psychiatric disorders including depression. In this study, we show that ELS in a postnatal sensitive period increases sensitivity to adult stress in female mice, consistent with our earlier findings in male mice. We used RNA-sequencing in the ventral tegmental area, nucleus accumbens, and prefrontal cortex of male and female mice to show that adult stress is distinctly represented in the brain's transcriptome depending on ELS history.
View Article and Find Full Text PDFBackground: Previous studies identified several separate risk factors for stress-induced disorders. However, an integrative model of susceptibility versus resilience to stress including measures from brain-body domains is likely to yield a range of multiple phenotypic information to promote successful adaptation to stress.
Methods: We used computational and molecular approaches to test whether 1) integrative brain-body behavioral, immunological, and structural domains characterized and predicted susceptibility or resilience to social defeat stress (SDS) in mice and 2) administration of acetyl-L-carnitine promoted resilience at the SDS paradigm.
Drug abuse is a multifaceted disorder that involves maladaptive decision making. Long-lasting changes in the addicted brain are mediated by a complex circuit of brain reward regions. The prefrontal cortex (PFC) is one region in which chronic drug exposure changes expression and function of upstream transcriptional regulators to alter drug responses and aspects of the addicted phenotype.
View Article and Find Full Text PDFNeuronal circuits within the prefrontal cortex (PFC) mediate higher cognitive functions and emotional regulation that are disrupted in psychiatric disorders. The PFC undergoes significant maturation during adolescence, a period when cannabis use in humans has been linked to subsequent vulnerability to psychiatric disorders such as addiction and schizophrenia. Here, we investigated in a rat model the effects of adolescent exposure to Δ-tetrahydrocannabinol (THC), a psychoactive component of cannabis, on the morphological architecture and transcriptional profile of layer III pyramidal neurons-using cell type- and layer-specific high-resolution microscopy, laser capture microdissection and next-generation RNA-sequencing.
View Article and Find Full Text PDFThe role of somatostatin interneurons in nucleus accumbens (NAc), a key brain reward region, remains poorly understood due to the fact that these cells account for < 1% of NAc neurons. Here, we use optogenetics, electrophysiology, and RNA-sequencing to characterize the transcriptome and functioning of NAc somatostatin interneurons after repeated exposure to cocaine. We find that the activity of somatostatin interneurons regulates behavioral responses to cocaine, with repeated cocaine reducing the excitability of these neurons.
View Article and Find Full Text PDFMethamphetamine (Meth) seeking progressively increases after withdrawal (incubation of Meth craving), but the transcriptional mechanisms that contribute to this incubation are unknown. Here we used RNA-sequencing to analyze transcriptional profiles associated with incubation of Meth craving in central amygdala (CeA) and orbitofrontal cortex (OFC), two brain areas previously implicated in relapse to drug seeking. We trained rats to self-administer either saline (control condition) or Meth (10 days; 9 h/day, 0.
View Article and Find Full Text PDFThe rapid elimination of dying neurons and nonfunctional synapses in the brain is carried out by microglia, the resident myeloid cells of the brain. Here we show that microglia clearance activity in the adult brain is regionally regulated and depends on the rate of neuronal attrition. Cerebellar, but not striatal or cortical, microglia exhibited high levels of basal clearance activity, which correlated with an elevated degree of cerebellar neuronal attrition.
View Article and Find Full Text PDFBackground: Global changes in gene expression underlying circuit and behavioral dysregulation associated with cocaine addiction remain incompletely understood. Here, we show how a history of cocaine self-administration (SA) reprograms transcriptome-wide responses throughout the brain's reward circuitry at baseline and in response to context and/or cocaine re-exposure after prolonged withdrawal (WD).
Methods: We assigned male mice to one of six groups: saline/cocaine SA + 24-hour WD or saline/cocaine SA + 30-day WD + an acute saline/cocaine challenge within the previous drug-paired context.
Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress.
View Article and Find Full Text PDFRegulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance.
View Article and Find Full Text PDFBackground: Lasting changes in gene expression in brain reward regions, including nucleus accumbens (NAc), contribute to persistent functional changes in the addicted brain. We and others have demonstrated that altered expression of several candidate transcription factors in NAc regulates drug responses. A recent large-scale genome-wide study from our group predicted transcription factor E2F3 (E2F3) as a prominent upstream regulator of cocaine-induced changes in gene expression and alternative splicing.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions.
View Article and Find Full Text PDFEarly life stress increases risk for depression. Here we establish a "two-hit" stress model in mice wherein stress at a specific postnatal period increases susceptibility to adult social defeat stress and causes long-lasting transcriptional alterations that prime the ventral tegmental area (VTA)-a brain reward region-to be in a depression-like state. We identify a role for the developmental transcription factor orthodenticle homeobox 2 () as an upstream mediator of these enduring effects.
View Article and Find Full Text PDFNeuropathic pain is a complex chronic condition characterized by various sensory, cognitive, and affective symptoms. A large percentage of patients with neuropathic pain are also afflicted with depression and anxiety disorders, a pattern that is also seen in animal models. Furthermore, clinical and preclinical studies indicate that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward.
View Article and Find Full Text PDFNeuropsychopharmacology
July 2017
Depression is a leading cause of disease burden, yet current therapies fully treat <50% of affected individuals. Increasing evidence implicates epigenetic mechanisms in depression and antidepressant action. Here we examined a possible role for the DNA dioxygenase, ten-eleven translocation protein 1 (TET1), in depression-related behavioral abnormalities.
View Article and Find Full Text PDFAdult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process-microRNA (miR) regulation-has yet to be explored.
View Article and Find Full Text PDFBackground: Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical.
Methods: We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala.
Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes.
View Article and Find Full Text PDFThe reinforcing and rewarding properties of cocaine are attributed to its ability to increase dopaminergic transmission in nucleus accumbens (NAc). This action reinforces drug taking and seeking and leads to potent and long-lasting associations between the rewarding effects of the drug and the cues associated with its availability. The inability to extinguish these associations is a key factor contributing to relapse.
View Article and Find Full Text PDFUnlabelled: Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes.
View Article and Find Full Text PDFThe striatal protein Regulator of G-protein signaling 9-2 (RGS9-2) plays a key modulatory role in opioid, monoamine, and other G-protein-coupled receptor responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood, reward, and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action.
View Article and Find Full Text PDFTurnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.
View Article and Find Full Text PDF