Publications by authors named "Imma Perez Salamo"

RNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated.

View Article and Find Full Text PDF

Background: Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3).

View Article and Find Full Text PDF

Cell suspension cultures have been studied for decades to produce natural molecules. However, the difficulty in generating stably transformed cell lines has limited their use to produce high value chemicals reproducibly and in elevated quantities. In this protocol, a method to stably transform and maintain cell suspension cultures is devised and presented in detail.

View Article and Find Full Text PDF

Phytochemicals are used often in vitro and in vivo in cancer research. The plant hormones jasmonates (JAs) control the synthesis of specialized metabolites through complex regulatory networks. JAs possess selective cytotoxicity in mixed populations of cancer and normal cells.

View Article and Find Full Text PDF

Heat shock factors regulate responses to high temperature, salinity, water deprivation, or heavy metals. Their function in combinations of stresses is, however, not known. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) was previously reported to regulate responses to salt and oxidative stresses.

View Article and Find Full Text PDF

Background And Aims: Cultured cell suspensions have been the preferred model to study the apoplast as well as to monitor metabolic and cell cycle-related changes. Previous work showed that methyl jasmonate (MeJA) inhibits leaf growth in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, with COI1 being the jasmonate (JA) receptor. Here, the effect of COI1 overexpression on the growth of stably transformed arabidopsis cell cultures is described.

View Article and Find Full Text PDF

Screening for tolerance traits in plant cell cultures can combine the efficiency of microbial selection and plant genetics. Agrobacterium-mediated transformation can efficiently introduce cDNA library to cell suspension cultures generating population of randomly transformed microcolonies. Transformed cultures can subsequently be screened for tolerance to different stress conditions such as salinity, high osmotic, or oxidative stress conditions.

View Article and Find Full Text PDF

The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene.

View Article and Find Full Text PDF
Article Synopsis
  • Heat shock factors (HSFs), specifically HSFA4A, play a crucial role in enhancing plant tolerance to abiotic stresses like salt and oxidative stress in Arabidopsis thaliana.
  • Estradiol can induce HSFA4A, leading to decreased hydrogen peroxide and lipid peroxidation levels, and its inactivation results in increased sensitivity to salt stress.
  • HSFA4A interacts with specific mitogen-activated protein kinases (MPK3 and MPK6), and phosphorylation of HSFA4A at serine-309 is key for activating the transcription of stress response genes, such as HEAT SHOCK PROTEIN17.6A.
View Article and Find Full Text PDF

The moss Physcomitrella patens can withstand extreme environmental conditions including drought and salt stress. Tolerance to dehydration in mosses is thought to rely on efficient limitation of stress-induced cell damage and repair of cell injury upon stress relief. Dehydrin proteins (DHNs) are part of a conserved cell protecting mechanism in plants although their role in stress tolerance is not well understood.

View Article and Find Full Text PDF

A powerful means to learn about gene functions in a developmental or physiological context in an organism is to isolate the corresponding mutants with altered phenotypes. Diverse mutagenic agents, including chemical and biological, have been widely employed, and each comes with its own advantages and inconveniences. For Arabidopsis thaliana, whose genome sequence is publicly available, the reliance of reverse genetics to understand the relevant roles of genes particularly those coding for proteins in growth and development is now a common practice.

View Article and Find Full Text PDF

Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance.

View Article and Find Full Text PDF