Publications by authors named "Imma Fichera"

Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI.

View Article and Find Full Text PDF

Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens.

View Article and Find Full Text PDF

The endosialin/CD248/TEM1 receptor is expressed on the cell surface of tumor-associated stroma cells as well as in sarcoma and neuroblastoma cells. This receptor is emerging as an attractive molecule in diagnostics and therapeutics because of its expression across the stroma of many human tumors, the low to absent expression in normal tissues and accessibility from the vascular circulation. In this study, we present evidence of the preclinical efficacy of a novel Antibody-Drug Conjugate (ENDOS/ADC).

View Article and Find Full Text PDF

Elevated serum or tissue levels of lectin galactoside-binding soluble 3 binding protein (LGALS3BP) have been associated with short survival and development of metastasis in a variety of human cancers. However, the role of LGALS3BP, particularly in the context of tumor-host relationships, is still missing. Here, we show that LGALS3BP knockdown in MDA-MB-231 human breast cancer cells leads to a decreased adhesion to fibronectin, a reduced transendothelial migration and, more importantly, a reduced expression of vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

Cadherin-16 was originally identified as a tissue-specific cadherin present exclusively in kidney. Only recently, Cadherin-16 has been detected also on the plasma membrane of mouse thyrocytes. This last finding prompted us to note that the expression profile of Cadherin-16 resembles that of the transcription factor Pax8, a member of the Pax (paired-box) gene family, predominantly expressed in the developing and adult kidney and thyroid.

View Article and Find Full Text PDF