COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration, and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome.
View Article and Find Full Text PDFThe aim of this study was to assess inosine triphosphate (ITPase) expression in the different leukocyte populations present in peripheral blood samples of a nonimmune compromised control group. For this purpose, a multiparameter flow cytometric assay was developed and performed to study ITPase expression in peripheral leukocyte subpopulations of healthy volunteers (n = 20). Qualitative ITPase expression was assessed by determining the percentage of ITPase-positive cells.
View Article and Find Full Text PDFCD40 ligand (CD40L), identified as a costimulatory molecule expressed on T cells, is also expressed and functional on platelets. We investigated the thrombotic and inflammatory contributions of platelet CD40L in atherosclerosis. Although CD40L-deficient (Cd40l(-/-)) platelets exhibited impaired platelet aggregation and thrombus stability, the effects of platelet CD40L on inflammatory processes in atherosclerosis were more remarkable.
View Article and Find Full Text PDFArterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions.
View Article and Find Full Text PDFBackground: The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.
View Article and Find Full Text PDFVascular injury leads to formation of a structured thrombus as a consequence of platelet activation and aggregation, thrombin and fibrin formation, and trapping of leukocytes and red cells. This review summarises current evidence for heterogeneity of platelet responses and functions in the thrombus-forming process. Environmental factors contribute to response heterogeneity, as the platelets in a thrombus adhere to different substrates, and sense specific (ant)agonists and rheological conditions.
View Article and Find Full Text PDFPlatelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP.
View Article and Find Full Text PDFIn vivo mouse models have indicated that the intrinsic coagulation pathway, initiated by factor XII, contributes to thrombus formation in response to major vascular damage. Here, we show that fibrillar type I collagen provoked a dose-dependent shortening of the clotting time of human plasma via activation of factor XII. This activation was mediated by factor XII binding to collagen.
View Article and Find Full Text PDFMicrocirculation
May 2008
Objective: Blood coagulation and platelet activation are mutually dependent processes, but contribute differently to venous and arterial thrombosis. We investigated the interplay of these processes in vivo in a mouse model of arteriolar and venular thrombus formation.
Methods: Thrombus formation was studied by intravital (fluorescence) microscopy after topical application of FeCl3 on mouse mesenteric microvessels.
We investigated the role of CD40 and CD40L in neointima formation and identified the downstream CD40-signaling intermediates (tumor necrosis factor [TNF]-receptor associated factors [TRAF]) involved. Neointima formation was induced in wild-type, CD40(-/-), CD40L(-/-), and in CD40(-/-) mice that contained a CD40 transgene with or without mutations at the CD40-TRAF2,3&5, TRAF6, or TRAF2,3,5&6 binding sites. Compared with wild-type mice, CD40(-/-) mice showed a significant decrease in neointima formation with increased collagen deposition and decreased inflammatory cell infiltration.
View Article and Find Full Text PDFFEBS J
January 2008
During thrombus formation, thrombin, which is abundantly present at sites of vascular injury, activates platelets in part via autocrine-produced ADP. We investigated the signaling pathways by which thrombin and ADP in synergy induced platelet Ca(2+) elevation and procoagulant activity, and we monitored the consequences for the coagulation process. Even at high thrombin concentration, autocrine and added ADP enhanced and prolonged Ca(2+) depletion from internal stores via stimulation of the P2Y(12) receptors.
View Article and Find Full Text PDFPlatelets stably interact with collagen via glycoprotein (GP)VI and alpha2beta1integrin. With alpha2-null mice, we investigated the role of alpha2beta1 in thrombus formation and stability in vivo and in vitro. Using a FeCl(3)-induced thrombosis model, in arteries from alpha2-null mice smaller thrombi were formed with more embolization compared to vessels from wild-type mice.
View Article and Find Full Text PDFObjective: Platelets play a dual role in thrombosis by forming aggregates and stimulating coagulation. We investigated the commitment of platelets to these separate functions during collagen-induced thrombus formation in vitro and in vivo.
Methods And Results: High-resolution 2-photon fluorescence microscopy revealed that in thrombus formation under flow, fibrin(ogen)-binding platelets assembled into separate aggregates, whereas distinct patches of nonaggregated platelets exposed phosphatidylserine.
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation.
View Article and Find Full Text PDFSignaling from collagen and G protein-coupled receptors leads to platelet adhesion and subsequent thrombus formation. Paracrine agonists such as ADP, thromboxane, and Gas6 are required for platelet aggregate formation. We hypothesized that thrombi are intrinsically unstable structures and that their stabilization requires persistent paracrine activity and continuous signaling, maintaining integrin alpha(IIb)beta3 activation.
View Article and Find Full Text PDFObjective: Both collagen and tissue factor can be initiating factors in thrombus formation. We investigated the signaling pathway of collagen-induced platelet activation in interaction with tissue factor-triggered coagulation during the thrombus-forming process.
Methods And Results: In murine blood flowing over collagen, platelet exposure of phosphatidylserine and procoagulant activity, but not adhesion, completely relied on each of the following signaling modules: glycoprotein VI (GPVI), FcR gamma-chain, Src kinases, adaptor protein LAT, and phospholipase Cgamma2 (PLCgamma2).
Collagen is a unique agonist of platelets, because it acts as an immobilized ligand that only causes platelet activation after stable adhesion. This review addresses the present understanding of how platelet interaction with collagen supports the process of thrombin generation and coagulation. Only some of the collagen-adhered platelets, that is, those showing profound changes in shape and shedding microparticles (resembling apoptotic cells), appear to contribute to the procoagulant activity of platelets.
View Article and Find Full Text PDFThe platelet glycoproteins (GPs) Ib, integrin alpha(2)beta(1), and GPVI are considered central to thrombus formation. Recently, their relative importance has been re-evaluated based on data from murine knockout models. To examine their relationship during human thrombus formation on collagen type I fibers at high shear (1000 s(-1)), we tested a novel antibody against GPVI, an immunoglobulin single-chain variable fragment, 10B12, together with specific antagonists for GPIb alpha (12G1 Fab(2)) and alpha(2)beta(1) (6F1 mAb or GFOGER-GPP peptide).
View Article and Find Full Text PDFScott syndrome is a bleeding disorder, characterized by impaired surface exposure of procoagulant phosphatidylserine (PS) on platelets and other blood cells, following activation with Ca(2+)-elevating agents. Since store-mediated Ca(2+) entry (SMCE) forms an important part of the Ca(2+) response in various blood cells, it has been proposed that deficiencies in Ca(2+) entry may relate to the impaired PS exposure in the Scott syndrome. Here, we have tested this hypothesis by investigating the relationship between Ca(2+) fluxes and PS exposure in platelets as well as B-lymphoblasts derived from the original Scott patient (M.
View Article and Find Full Text PDF