Publications by authors named "Imke Meyer"

Background: Sensitive skin (SenS) is a syndrome leading to unpleasant sensations with little visible signs. Grading its severity generally relies on questionnaires or subjective ratings.

Materials And Methods: The SenS status of 183 subjects was determined by trained assessors.

View Article and Find Full Text PDF

Background: The role of platelets in the pathogenesis of venous thromboembolism (VTE) is receiving increasing attention; however, limited information is available on platelet function in the acute phase of the disease.

Objective: To characterize platelet function according to VTE phenotypes.

Patients/methods: In total, 154 subjects (isolated pulmonary embolism [iPE], n = 28; isolated deep vein thrombosis [iDVT], n = 35; DVT+PE, n = 91) were included.

View Article and Find Full Text PDF

Background: The pathogenesis of arterial and venous thrombosis is in large part interlaced. How much platelet phenotype relates to acute venous thromboembolism (VTE) independent of the underlying cardiovascular profile is presently poorly investigated.

Methods: Platelet count and mean platelet volume (MPV), platelet aggregation in whole blood and platelet rich plasma (PRP), platelet-dependent thrombin generation (TG) and platelet surface activation markers were measured under standardized conditions.

View Article and Find Full Text PDF

Microsomal and soluble epoxide hydrolase (mEH and sEH) fulfill apparently distinct roles: Whereas mEH detoxifies xenobiotics, sEH hydrolyzes fatty acid (FA) signaling molecules and is thus implicated in a variety of physiological functions. These epoxy FAs comprise epoxyeicosatrienoic acids (EETs) and epoxy-octadecenoic acids (EpOMEs), which are formed by CYP epoxygenases from arachidonic acid (AA) and linoleic acid, respectively, and then are hydrolyzed to their respective diols, the so-called DHETs and DiHOMEs. Although EETs and EpOMEs are also substrates for mEH, its role in lipid signaling is considered minor due to lower abundance and activity relative to sEH.

View Article and Find Full Text PDF

In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions.

View Article and Find Full Text PDF

Collagen receptors GPVI (also known as GP6) and integrin α2β1 are highly expressed on blood platelets and megakaryocytes, their immediate precursors. After vessel injury, subendothelial collagen becomes exposed and induces platelet activation to prevent blood loss. Collagen types I and IV are thought to have opposite effects on platelet biogenesis, directing proplatelet formation (PPF) towards the blood vessels to prevent premature release within the marrow cavity.

View Article and Find Full Text PDF

Loss of subcutaneous fat is a hallmark of ageing usually starting in the face. Attempts to ameliorate cosmetically the appearance of subcutaneous fat loss have been of limited success as they fail to rebuild the missing subcutaneous tissue. Ageing-driven loss of subcutaneous fat results from (i) the reduced capacity of pre-adipocytes to differentiate into adipocytes and (ii) the fact that adipocytes of the elderly secrete increased amounts of TNFα, that in turn enhances lipolysis, inhibits pre-adipocyte differentiation and induces dedifferentiation of adipocytes.

View Article and Find Full Text PDF

Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin and tubulin cytoskeleton.

View Article and Find Full Text PDF

The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses.

View Article and Find Full Text PDF

The crucial function of blood platelets in hemostasis is to prevent blood loss by stable thrombus formation. This process is driven by orchestrated mechanisms including several signal transduction cascades and morphologic transformations. The cytoplasmic microtubule modulator RanBP10 is a Ran and β1-tubulin binding protein that is essential for platelet granule release and mice lacking RanBP10 harbor a severe bleeding phenotype.

View Article and Find Full Text PDF

Terminally mature megakaryocytes undergo dramatic cellular reorganization to produce hundreds of virtually identical platelets. A hallmark feature of this process is the generation of an elaborate system of branched protrusions called proplatelets. We recently identified RanBP10 as a tubulin-binding protein that is concentrated along polymerized microtubules in mature megakaryocytes.

View Article and Find Full Text PDF

Microtubule spindle assembly in mitosis is stimulated by Ran.GTP, which is generated along condensed chromosomes by the guanine nucleotide exchange factor (GEF) RCC1. This relationship suggests that similar activities might modulate other microtubule structures.

View Article and Find Full Text PDF

The posttranscriptional regulatory element (PRE) is considered to enhance hepatitis B virus (HBV) gene expression by facilitating the nuclear export of intronless viral subgenomic RNAs. Its role in the RNA metabolism of the viral pregenomic RNA (pgRNA) is currently unknown. We identified a positively cis-acting splicing regulatory element (SRE-1) and present two lines of evidence for its functionality.

View Article and Find Full Text PDF

RNA duplex formation between U1 snRNA and a splice donor (SD) site can protect pre-mRNA from degradation prior to splicing and initiates formation of the spliceosome. This process was monitored, using sub-genomic HIV-1 expression vectors, by expression analysis of the glycoprotein env, whose formation critically depends on functional SD4. We systematically derived a hydrogen bond model for the complementarity between the free 5' end of U1 snRNA and 5' splice sites and numerous mutations following transient transfection of HeLa-T4+ cells with 5' splice site mutated vectors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfo2bhudd1ol96l8t64gbtkj8doc7o0ep): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once