Publications by authors named "Imen Ferjani"

Effective monitoring of road conditions is crucial for ensuring safe and efficient transportation systems. By leveraging the power of crowd-sourced smartphone sensor data, road condition monitoring can be conducted in real-time, providing valuable insights for transportation planners, policymakers, and the general public. Previous studies have primarily focused on the use of pre-trained machine learning models and threshold-based methods for anomaly classification, which may not be suitable for real-world scenarios that require incremental detection and classification.

View Article and Find Full Text PDF

Road condition monitoring is essential for improving traffic safety and reducing accidents. Machine learning methods have recently gained prominence in the practically important task of controlling road surface quality. Several systems have been proposed using sensors, especially accelerometers present in smartphones due to their availability and low cost.

View Article and Find Full Text PDF

Calponins are a small family of proteins that alter the interaction between actin and myosin II and mediate signal transduction. These proteins bind F-actin in a complex manner that depends on a variety of parameters such as stoichiometry and ionic strength. Calponin binds G-actin and F-actin, bundling the latter primarily through two distinct and adjacent binding sites (ABS1 and ABS2).

View Article and Find Full Text PDF

Gelsolin and calponin are cytoskeletal and signalling proteins that form a tight 1:1 complex (GCC). We show that calponin within the GCC inhibits the rate of gelsolin mediated nucleation of actin polymerization. The actin-binding function of calponin is ablated within the GCC as the actin-binding site overlaps with one of the gelsolin binding sites.

View Article and Find Full Text PDF

Gelsolin and calponin are well characterized actin-binding proteins that form a tight gelsolin:calponin complex (GCC). We show here that the GCC is formed through two distinct interfaces. One of these is formed between 144-182 of calponin and 25-150 of gelsolin (G1).

View Article and Find Full Text PDF

Gelsolin is an actin-binding protein that is regulated by the occupancy of multiple calcium-binding sites. We have studied calcium induced conformational changes in the G1-2 and G1-3 sub-domains, and report the binding affinities for the three type II sites. A new probe for G3 has been produced and a K(d) of 5 microM has been measured for calcium in the context of G1-3.

View Article and Find Full Text PDF

Calponins are actin-binding proteins that are implicated in the regulation of actomyosin. Calponin binds filamentous actin (F-actin) through two distinct sites ABS1 and ABS2, with an affinity in the low micromolar range. We report that smooth muscle calponin binds monomeric actin with a similar affinity (K(d) of 0.

View Article and Find Full Text PDF

Gelsolin and calponin are well-characterized cytoskeletal proteins that are abundant and widely expressed in vertebrate tissues. It is also becoming apparent, however, that they are involved in cell signalling. In the present study, we show that gelsolin and calponin interact directly to form a high-affinity (K(d)=16 nM) 1:1 complex, by the use of fluorescent probes attached to both proteins, by affinity chromatography and by immunoprecipitation.

View Article and Find Full Text PDF