Publications by authors named "Imelda Mercado-Uribe"

We demonstrate that concurrent administration of poly(ADP-ribose) polymerase (PARP) and WEE1 inhibitors is effective in inhibiting tumor growth but poorly tolerated. Concurrent treatment with PARP and WEE1 inhibitors induces replication stress, DNA damage, and abrogates the G DNA damage checkpoint in both normal and malignant cells. Following cessation of monotherapy with PARP or WEE1 inhibitors, effects of these inhibitors persist suggesting that sequential administration of PARP and WEE1 inhibitors could maintain efficacy while ameliorating toxicity.

View Article and Find Full Text PDF

Anti-angiogenesis therapy has shown clinical benefit in patients with high-grade serous ovarian cancer (HGSC), but adaptive resistance rapidly emerges. Thus, approaches to overcome such resistance are needed. We developed the setting of adaptive resistance to anti-VEGF therapy, and performed a series of experiments in both immune competent and nude mouse models.

View Article and Find Full Text PDF

Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make cancer cells vulnerable has remained challenging and elusive. Here, we identify a previously unrecognized mechanism whereby metabolism of reactive stromal cells is reprogrammed through an upregulated glutamine anabolic pathway.

View Article and Find Full Text PDF

Background: NF-kB can function as an oncogene or tumor suppressor depending on cancer types. The role of NF-kB in low-grade serous ovarian cancer, however, has never been tested. We sought to elucidate the function of NF-kB in the low-grade serous ovarian cancer.

View Article and Find Full Text PDF

Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen.

View Article and Find Full Text PDF

Glutamine can play a critical role in cellular growth in multiple cancers. Glutamine-addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence.

View Article and Find Full Text PDF

Polyploid giant cancer cells (PGCCs) are a morphologically distinct subgroup of human tumor cells with increased nuclear size or multiple nuclei, but they are generally considered unimportant because they are presumed to be nondividing and thus nonviable. We have recently shown that these large cancer cells are not only viable but also can divide asymmetrically and yield progeny cancer cells with cancer stem-like properties via budding division. To further understand the molecular events involved in the regulation of PGCCs and the generation of their progeny cancer cells, we comparatively analyzed the proteomic profiles of PGCCs, PGCCs with budding daughter cells, and regular control cancer cells from the HEY and SKOv3 human ovarian cancer cell lines with and without CoCl2.

View Article and Find Full Text PDF

Paclitaxel is widely used to treat cancer patients through the blocking of mitosis and result in formation of polyploidy giant cancer cells (PGCCs), which are generally believed to be nondividing cells or in mitotic catastrophe. Here, we showed that PGCCs following the treatment of paclitaxel of MCF-7 breast cancer cell line have capability to generate regular-sized progeny cells through budding. The PGCCs not only grew into well-differentiated cancer cells that formed cancer organotypic structures in vitro but also trans-differentiated into multiple tumor stromal cells including myoepithelial, endothelial and erythroid cells.

View Article and Find Full Text PDF

High expression of vascular cell adhesion molecule 1 (VCAM1) has been shown to be associated with several cancers although its role in ovarian cancer development is largely undefined. The purpose of this study is to investigate its role in ovarian cancer using the epithelial cells and ovarian cancer cell lines and correlate its expression with clinicopathologic parameters in ovarian cancer patients. VCAM1 expression was examined via immunohistochemical staining of 251 high grade serous carcinoma samples using tissue microarray.

View Article and Find Full Text PDF

Cancer has long been considered a disease that mimics an "unhealed wound," with oncogene-induced secretory activation signals from epithelial cancer cells facilitating stromal fibroblast, endothelial, and inflammatory cell participation in tumor progression. However, the underlying mechanisms that orchestrate cooperative interaction between malignant epithelium and the stroma remain largely unknown. Here, we identified interleukin-1β (IL-1β) as a stromal-acting chemokine secreted by ovarian cancer cells, which suppresses p53 protein expression in cancer-associated fibroblasts (CAFs).

View Article and Find Full Text PDF

Bone marrow is generally considered the main source of erythroid cells. Here we report that a single hypoxia-mimic chemical, CoCl2, can increase the size of fibroblasts and cancer cells and lead to formation of polyploidy giant cells (PGCs) or polyploidy giant cancer cells (PGCCs), activation of stem cell marker expression, increased growth of normal and cancer spheroid, and lead to differentiation of the fibroblasts and epithelial cells toward erythroid lineage expressing hemoglobins both in vitro and in vivo. Immunohistochemical examination demonstrated that these cells are predominantly made of embryonic hemoglobins, with various levels of fetal and adult hemoglobins.

View Article and Find Full Text PDF

The oncogene RAS is known to induce genomic instability, leading to cancer development; the underlying mechanism, however, remains poorly understood. To better understand how RAS functions, we measured the activity of the functionally related genes Aurora-A and BRCA2 in ovarian cancer cell lines and tumor samples containing RAS mutations. We found that Aurora-A and BRCA2 inversely controlled RAS-associated genomic instability and ovarian tumorigenesis through regulation of cytokinesis and polyploidization.

View Article and Find Full Text PDF

Paclitaxel is commonly used to treat multiple human malignancies, but its mechanism of action is still poorly defined. Human ovarian cancer SKOV3 cells (parental SKOV3) were treated with paclitaxel (1μM) for 2days, and the morphologic changes in the cells were monitored for more than 4months. Parental SKOV3 underwent a markedly morphologic transition from the epithelial to fibroblast-like phenotype following treatment with paclitaxel; the resulting cells were designated as SKOV3-P.

View Article and Find Full Text PDF

Recent studies have suggested that some ovarian and pelvic serous carcinomas could originate from the fimbriated end of the distal fallopian tube. To test this hypothesis, we immortalized a normal human fallopian tube epithelial (FTE) cell line by using retrovirus-mediated overexpression of the early region of the SV40 T/t antigens and the human telomerase reverse transcriptase subunit (hTERT). These immortalized FTEs were then transformed by ectopic expression of oncogenic human HRAS (V12) .

View Article and Find Full Text PDF

Sex-determining region Y-box 2 is proposed to be a key transcription factor in embryonic stem cells. The known roles of sex-determining region Y-box 2 in development and cell differentiation suggest that it is relevant to the aberrant growth of tumor cells. Thus, sex-determining region Y-box 2 may play an important role in tumor progression.

View Article and Find Full Text PDF

As a putative marker for cancer stem cells in human malignant tumors, including ovarian cancer, CD133 expression may define a tumor-initiating subpopulation of cells and is associated with the clinical outcome of patients. However, at this time its clinical significance in ovarian cancer remains uncertain. The aim of this study was to clarify the clinical role of CD133 expression in human ovarian cancer.

View Article and Find Full Text PDF

TMPRSS2:ERG is a gene fusion resulting from the chromosomal rearrangement of the androgen-regulated TMPRSS2 gene and the ETS transcription factor ERG, leading to the over-expression of the oncogenic molecule ERG. This gene rearrangement has been found in approximately half of all prostate cancers and ERG overexpression is considered as a novel diagnostic marker for prostate carcinoma. However, little is known about the role of the TMPRSS2:ERG gene fusion in ovarian cancer.

View Article and Find Full Text PDF

Ovarian carcinoma is the most lethal gynecologic malignancy, however underlying molecular events remain elusive. Expression of human chorionic gonadotropin β subunit (β-hCG) is clinically significant for both trophoblastic and nontrophoblastic cancers; however, whether β-hCG facilitates ovarian epithelial cell tumorigenic potential remains uncharacterized. Immortalized nontumorigenic ovarian epithelial T29 and T80 cells stably overexpressing β-hCG were examined for alterations in cell cycle and apoptotic status by flow cytometry, expression of proteins regulating cell cycle and apoptosis by Western blot, proliferation status by MTT assay, anchorage-independent colony formation, and mouse tumor formation.

View Article and Find Full Text PDF

Purpose: NF-κB is a transcription factor known to promote tumorigenesis. However, NF-κB is also known to be proapoptotic and may potentially function as a tumor suppressor, although such a functional role has not been extensively investigated in human cancer.

Experimental Design: A dominant-negative mutant of IκBα with mutations at S32A and S36A was used to inhibit the function of NF-κB in ovarian cancer cell lines.

View Article and Find Full Text PDF

Purpose: Chemokine receptor CXCR2 is associated with malignancy in several cancer models; however, the mechanisms involved in CXCR2-mediated tumor growth remain elusive. Here, we investigated the role of CXCR2 in human ovarian cancer.

Experimental Design: CXCR2 expression was silenced by stable small hairpin RNA in ovarian cancer cell lines T29Gro-1, T29H, and SKOV3.

View Article and Find Full Text PDF

Background: Stanniocalcin 1 (STC1) is a secreted glycoprotein hormone. High expression of STC1 has been associated with several cancers including ovarian cancer, but its role in the development of ovarian cancer is not clear.

Methods: We used five human ovarian epithelial cancer cell lines (OVCA420, OVCA432, OVCA433, SKOV3, and HEY), immortalized human ovarian surface epithelial cells (T29 and T80), ovarian cancer tissues from 342 patients, serum from 73 ovarian cancer patients and from58 control subjects, and 116 mice, with six or eight per group.

View Article and Find Full Text PDF

Purpose: Aurora kinase A (Aurora-A) is known to regulate genomic instability and tumorigenesis in multiple human cancers. The underlying mechanism, however, is not fully understood. We examined the molecular mechanism of Aurora-A regulation in human ovarian cancer.

View Article and Find Full Text PDF

Papillary differentiation is one of the most common histological features of ovarian cancer, although the underlying mechanism that leads to such differentiation is not known. We hypothesized that human ovarian surface epithelial cells can be transformed into carcinoma with papillary differentiation by overexpressing HER2/neu in these cells. Mice were injected either subcutaneously or intraperitoneally with two immortalized human ovarian surface epithelial cell lines after enforced expression of HER-2/neu.

View Article and Find Full Text PDF

Epithelial ovarian cancer, which comprises several histologic types and grades, is the most lethal cancer among women in the United States. In this review, we summarize recent progress in understanding the pathology and biology of this disease and in development of models for preclinical research. Our new understanding of this disease suggests new targets for therapeutic intervention and novel markers for early detection of disease.

View Article and Find Full Text PDF

REDD1 is a gene induced by hypoxia and stimuli from multiple DNA damage. Here we show that REDD1 expression was elevated in RAS-transformed ovarian epithelial cells lines and that this overexpression increased these cells' growth rate and anchorage-independent growth on soft agar. Injection of immortalized ovarian epithelial cells overexpressing REDD1 into nude mice resulted in tumor growth that developed into papillary serous carcinoma in the peritoneal cavity.

View Article and Find Full Text PDF