The RNA-binding protein HuR regulates various cellular processes, such as proliferation, differentiation, and cell fate. Moreover, recent studies have shown that HuR modulates the expression of factors important for tumor growth and progression. Despite its prominent role in tumorigenesis, until recently, there have been no reported mutations in HuR that have been associated to cancer.
View Article and Find Full Text PDFThe nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE's role in supporting and maintaining a myriad of other functions has made it a target of study in many cellular processes, including senescence. The nucleus undergoes dramatic changes in senescence, many of which are driven by changes in the NE.
View Article and Find Full Text PDFFluorescence microscopy is a powerful tool enabling the visualization of protein localization within cells. In this article, we outline an automated and non-biased way to detect and quantify subcellular particles using immunocytochemistry, fluorescence microscopy, and the program CellProfiler. We discuss the examination of two types of subcellular particles: messenger ribonucleoprotein (mRNP) granules, namely processing bodies and stress granules, and autophagosomes.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels.
View Article and Find Full Text PDFCurr Opin Support Palliat Care
March 2021
The cellular stress response is a universal mechanism necessary for the survival of all organisms. This multifaceted process is primarily driven by regulation of gene expression to produce an intracellular environment suitable for promoting cell survival and recovery. Posttranscriptional regulatory events are considered as critical mechanisms that modulate core characteristics of mRNA transcripts to promote cell adaptation to various assaults.
View Article and Find Full Text PDFBackground: Influenza surveillance is necessary for detection of emerging variants of epidemiologic and clinical significance. This study describes the epidemiology of influenza types A and B, and molecular characteristics of surface glycoproteins (hemagglutinin [HA] and neuraminidase [NA]) of influenza A subtypes: pH1N1 and H3N2 circulated in Arabian Gulf, Levant and North Africa regions during 2009-2017.
Methods: Analysis of phylogenetics and evolution of HA and NA genes was done using full HA and NA sequences (n = 1229) downloaded from Influenza Research Database (IRD).
Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells.
View Article and Find Full Text PDFIn 2013 both Saudi Arabia and Qatar launched genome projects with the aim of providing information for better diagnosis, treatment and prevention of diseases and, ultimately to realize personalized medicine by sequencing hundred thousands samples. These population based genome activities raise a series of relevant ethical, legal and social issues general, related to the specific population structure as well as to the Islamic perspective on genomic analysis and genetic testing. To contribute to the debate, the Authors after reviewing the existing literature and taking advantage of their professional experience in the field and in the geographic area, discuss and provide their opinions.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
September 2014
Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation.
View Article and Find Full Text PDFRegulated degradation plays a major role in determining the levels of both non-coding (miRNA) and coding (mRNA) transcripts. Thus, insights into the factors and pathways that influence this process have broad, interdisciplinary implications. New findings by Malecki et al (2013), Lubas et al (2013), and Chang et al (2013) identify the protein Dis3L2 as a major player in the 3′–5′ exonucleolytic decay of transcripts.
View Article and Find Full Text PDFCachexia, or muscle-wasting syndrome, is one of the major causes of death in patients affected by diseases such as cancer, AIDS and sepsis. However, no effective anti-cachectic treatment is currently available. Here we show that a low dose of pateamine A, an inhibitor of translation initiation, prevents muscle wasting caused by the cytokines interferon γ and tumour necrosis factor α or by C26-adenocarcinoma tumours.
View Article and Find Full Text PDFAnorexia-cachexia syndrome (ACS) is a major determinant of cancer-related death that causes progressive body weight loss due to depletion of skeletal muscle mass and body fat. Here, we report the development of a novel preclinical murine model of ACS in which lymphomas harbor elevated Myc and activated mTOR signaling. The ACS phenotype in this model correlated with deregulated expression of a number of cytokines, including elevated levels of interleukin-10 which was under the direct translational control of mTOR.
View Article and Find Full Text PDFRho-dependent transcription termination is an essential process for the regulation of bacterial gene expression. Thus far, only two Rho-specific inhibitors of bacterial transcription termination have been described, the psu protein from the satellite bacteriophage P4 and YaeO from Escherichia coli. Here, we report the solution structure of YaeO, the first of a Rho-specific inhibitor of transcription termination.
View Article and Find Full Text PDFCytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation.
View Article and Find Full Text PDFThe solute carrier family 11 member 1 (SLC11A1, formerly NRAMP1) gene is associated with infectious and autoimmune diseases and plays an important role in macrophage activation. Human SLC11A1 mRNA contains an AU-rich element (ARE) within the 3' untranslated region; however, its role in the regulation of SLC11A1 gene expression has not been elucidated. Here we analyze the expression of SLC11A1 in human monocytes and HL-60 cells and then use HL-60 cells as a model to determine whether RNA-binding protein HuR is associated with the ARE and involved in SLC11A1 mRNA turnover.
View Article and Find Full Text PDFThe formation of muscle fibers involves the sequential expression of many proteins that regulate key steps during myoblast-to-myotube transition. MyoD, myogenin, and the cyclin-dependent kinase inhibitor p21cip1 are major players in the initiation and maintenance of the differentiated state of mouse embryonic muscle cells (C2C12). The messenger RNAs encoding these three proteins contain typical AU-rich elements (AREs) in their 3'-untranslated regions (3'-UTRs), which are known to affect the half-life of many short-lived mRNAs.
View Article and Find Full Text PDF