Publications by authors named "Imed Boukhris"

We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) transmission remains a significant public health concern. It is well documented globally, however, Nowshera district, Pakistan, is lacking such profile. This study aims to explore the relationship between HCV infection and several risk factors, including socio-demographic, clinical and personal life-style factors.

View Article and Find Full Text PDF

This study presents a novel approach to fabricating interdigitated capacitive (IDC) touch sensors using graphite-based pencils on a wood substrate. The sensors were designed to detect touches and pressure variations, offering a cost-effective and environmentally friendly solution for sensor fabrication. The fabrication process involved abrasion of graphite pencils on a wooden substrate to create conductive traces, followed by the integration of interdigitated electrode structures.

View Article and Find Full Text PDF

In real-life situations, we have to analyze the data that contains the atypical observations, and the presence of outliers has adverse effects on the performance of ordinary least square estimates. In this situation, redescedning M-estimators, proposed by Huber (1964), are used to tackle the effects of outliers to increase the efficiency of least square estimates. In this study, we introduce a redescending M-estimator designed to generate robust estimates by mitigating the influence of outlier observations, even when the tuning constant is set to low values.

View Article and Find Full Text PDF

Textile industry dye effluent contains a mixture of different kinds of dyes. Many times, photocatalysis is targeted as a solution for the treatment of dye effluent from the textile industry. Many researches have been published related to the photocatalysis of single textile dyes but in the real-world scenario, effluent is a mixture of dyes.

View Article and Find Full Text PDF

Electrowetting behaviour for carbon nanotubes (CNT) grown on stainless steel mesh was investigated. The effect of temperature, time, and applied bias voltage on the contact angle of water droplets was studied. The impact of temperature variation on contact angle was also performed for the temperature ranging from 25 to 70 °C.

View Article and Find Full Text PDF

The fabrication of a Poly (vinylidene fluoride) membrane (PVDF) and ceramic-assisted bismuth vanadate-polyvinylidene fluoride (BiVO-PVDF) composite membrane was achieved through the utilization of the electrospinning technique. The composition and structure of the fabricated membranes were characterized by X-ray powder diffraction, Raman analysis, scanning electron microscopy, Thermo gravimetric analyzer, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy techniques. The prepared polymeric membranes were then utilized for catalytic investigation and to explore, how structure affects catalytic activity using 5 mg/L, 10 mL methylene blue (MB) dye solution.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroelectric materials like BaCaTiZrO (BCZTO) have multiple catalytic abilities that make them effective for removing organic pollutants from water through various processes such as piezocatalysis and photocatalysis.
  • BCZTO has been widely studied for its applications in electronics but also demonstrates strong performance in water-cleaning and bacterial-killing applications.
  • The review discusses the fundamentals of ferroelectric ceramics, the significance of electric poling, and the principles behind the different catalytic processes involved in BCZTO's multicatalytic capabilities.
View Article and Find Full Text PDF

A basic urea technique was successfully used to synthesize Mg/Al-Layered double hydroxides (Mg/Al LDHs), which were then calcined at 400 °C to form Mg/Al-Layered double oxides (Mg/Al LDOs). To reconstruct LDHs, Mg/Al LDOs were fabricated with different feeding ratios of Ni by the co-precipitation method. After synthesis, the Ni/Mg/Al-layered double hydroxides (NMA-LDHs) with 20% and 30% Ni (S1 and S2) were roasted at 400 °C and transformed into corresponding Ni/Mg/Al-layered double oxides (NMA-LDOs) (S1a and S2b, respectively).

View Article and Find Full Text PDF

The mechanochemical ball milling followed by heating at 650 °C for 5 h successfully produced the single-phase BiVO powder. Catalytic activity for methylene blue dye degradation was investigated. Raman spectroscopy and X-ray diffraction were used to confirm the phase formation.

View Article and Find Full Text PDF

A thermoregulating smart textile based on phase change material (PCM) polyethylene glycol (PEG) was prepared by chemically grafting carboxyl-terminated PEG onto cotton. Further deposits of graphene oxide (GO) nanosheets were made on the PEG grafted cotton (PEG-g-Cotton) to improve the thermal conductivity of the fabric and to block harmful UV radiation. The GO-PEG-g-Cotton was characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and field emission-scanning electron microscopy (FE-SEM).

View Article and Find Full Text PDF

This study focuses on analyzing the poling effect of BaBiTiO (BBT) on the basis of photo and piezo-catalysis performance. BBT powder is prepared via a solid state reaction followed by calcination at 950 °C for 4 h. BBT is characterized by an X-ray diffractometer, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

In the present numerical simulation work, effective elastic and piezoelectric properties are calculated and a comparative study is conducted on a cement matrix-based piezocomposite with 0-3 and gyroid triply periodic minimal surface (TPMS) inclusions. The present study compares the effective properties of different piezoelectric materials having two different types of connectivity of the inclusions namely, 0-3 inclusions where the inclusions are physically separated from each other and are embedded within the matrix and the second one is TPMS inclusions having interpenetrating phase type connectivity. Effective properties are calculated for four different materials at five different volume fractions namely, 10%, 15%, 20%, 25%, and 30% volume fractions of inclusion by volume.

View Article and Find Full Text PDF

This study aimed to investigate the compact 1-bit coding metamaterial design with various conventional and cuboid shapes by analysing the bistatic scattering patterns as well as the monostatic radar cross-section for microwave applications. The construction of this metamaterial design depends on binary elements. For example, 1-bit coding metamaterial comprises two kinds of unit cell to mimic both coding particles such as '0' and '1' with 0° and 180° phase responses.

View Article and Find Full Text PDF

Reduced graphene oxide (rGO)/bismuth vanadate BiVO composites are fabricated with varied rGO amounts (0, 1, 2, and 3 wt%) through the synergetic effects of ultrasonication, photoinduced reduction, and hydrothermal methods, and the materials are tested as tools for sonophotocatalytic methylene blue (MB) dye degradation. The effect of rGO content on the sonophotocatalytic dye degradation capabilities of the composites are explored. Characterization of the proposed materials is done through transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy as well as scanning electron microscopy.

View Article and Find Full Text PDF

In this paper, we used Geant4 Monte Carlo simulations to investigate the effect of TiO/VO substitution on the radiation shielding properties of alkali borate glasses in the chemical form of 30LiO+55BO+5ZnO + xTiO+(10 - x)VO, where x = 0, 2.5, 5, 7.5, and 10 mol%.

View Article and Find Full Text PDF