Publications by authors named "Imberti B"

The development of the human kidney leads to the establishment of nephron endowment through a process influenced by both genetic and environmental factors. There is individual variability regarding nephron endowment and factors including aging and pathological conditions contribute to the decline in the number of nephrons, impacting renal function. Genetic determinants, such as mutations in crucial developmental genes like Pax2, and epigenetic mechanisms mediated by key enzymes including sirtuin 3, play critical roles in the regulation of the number of nephrons, with implications for kidney disease susceptibility.

View Article and Find Full Text PDF

The complement system, a cornerstone of the innate immune defense, typically confers protection against pathogens. However, in various clinical scenarios the complement's defensive actions can harm host cells, exacerbating immune and inflammatory responses. The central components C3 and C5 undergo proteolytic cleavage during complement activation, yielding small active fragments C3a and C5a anaphylatoxins.

View Article and Find Full Text PDF

Sirtuin 3 (SIRT3), the main deacetylase of mitochondria, modulates the acetylation levels of substrates governing metabolism and oxidative stress. In the kidney, we showed that SIRT3 affects the proper functioning of high energy-demanding cells, such as tubular cells and podocytes. Less is known about the role of SIRT3 in regulating endothelial cell function and its impact on the progression of kidney disease.

View Article and Find Full Text PDF

The spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can interact with endothelial cells. However, no studies demonstrated the direct effect of the spike protein subunit 1 (S1) in inducing lung vascular damage and the potential mechanisms contributing to lung injury. Here, we found that S1 injection in mice transgenic for human angiotensin converting enzyme 2 (ACE2) induced early loss of lung endothelial thromboresistance at 3 days, as revealed by thrombomodulin loss and von Willebrand factor (vWF) increase.

View Article and Find Full Text PDF

A reduced nephron number at birth, due to critical gestational conditions, including maternal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in adulthood. No interventions are currently available to augment nephron number. We have recently shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment.

View Article and Find Full Text PDF

Shiga toxin (Stx)-producing is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS.

View Article and Find Full Text PDF

Microvascular thrombosis is associated with multiorgan failure and mortality in coronavirus disease 2019 (COVID-19). Although thrombotic complications may be ascribed to the ability of SARS-CoV-2 to infect and replicate in endothelial cells, it has been poorly investigated whether, in the complexity of viral infection in the human host, specific viral elements alone can induce endothelial damage. Detection of circulating spike protein in the sera of severe COVID-19 patients was evaluated by ELISA.

View Article and Find Full Text PDF

Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic option for limiting chronic kidney disease progression. Conditioned medium (CM) containing bioactive compounds could convey similar benefits, avoiding the potential risks of cell therapy. This study compared the efficacy of nonrenal and renal cell-based therapy with the corresponding CM in rats with renal mass reduction (RMR).

View Article and Find Full Text PDF

The prevalence of renal diseases is emerging as a public health problem. Despite major progress in supportive therapy, mortality rates among patients remain high. In an attempt to find innovative treatments to stimulate kidney regeneration, stem cell-based technology has been proposed as a potentially promising strategy.

View Article and Find Full Text PDF

Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers.

View Article and Find Full Text PDF

New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy.

View Article and Find Full Text PDF

Purpose Of Review: Ongoing research is constantly looking for means to modulate the immune system for long-lasting engraftment of pluripotent stem cells (PSC) during stem cell-based therapies. This study reviews data on in-vitro and in-vivo immunogenicity of embryonic and induced-PSC and describes how their immunological properties can be harnessed for tolerance induction in organ transplantation.

Recent Findings: Although PSC display immunomodulatory properties in vitro, they are capable of eliciting an immune response that leads to cell rejection when transplanted into immune-competent recipients.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) of bone marrow origin appear to be an attractive candidate for cell-based therapies. However, the major barrier to the effective implementation of MSC-based therapies is the lack of specific homing of exogenously infused cells and overall the inability to drive them to the diseased or damaged tissue. In order to circumvent these limitations, we developed a preconditioning strategy to optimize MSC migration efficiency and potentiate their beneficial effect at the site of injury.

View Article and Find Full Text PDF

Human amniotic fluid stem (hAFS) cells, a novel class of broadly multipotent stem cells that share characteristics of both embryonic and adult stem cells, have been regarded as promising candidate for cell therapy. Taking advantage by the well-established murine model of acute kidney injury (AKI), we studied the proregenerative effect of hAFS cells in immunodeficient mice injected with the nephrotoxic drug cisplatin. Infusion of hAFS cells in cisplatin mice improved renal function and limited tubular damage, although not to control level, and prolonged animal survival.

View Article and Find Full Text PDF

Current interventions for the treatment of acute kidney injury (AKI) are not satisfactory, and it is time to approach new strategies in order to definitely take a step forward. At its beginning, cell therapy was innovative and promising. We have shown that mesenchymal stem cells (MSCs), isolated from human and murine bone marrow (BM), behave as an efficacious tool for the treatment of cisplatin-induced AKI in mice in terms of amelioration of renal function and structure, and animal survival.

View Article and Find Full Text PDF

Tolerance induction toward allogeneic organ grafts represents one of the major aims of transplantation medicine. Stem cells are promising candidates for promoting donor-specific tolerance. In this study, we investigated the immunomodulatory properties of murine embryonic stem cells (ESCs), obtained either by in vitro fertilization (IVF-ESCs) or by nuclear transfer (NT-ESCs), in heart transplant mouse models.

View Article and Find Full Text PDF

In search for new sources of mesenchymal stem cells (MSCs) for renal repair in acute kidney injury (AKI), we investigated the potential of human cord blood (CB)-MSCs to cure mice with AKI. Infusion of CB-MSCs in immunodeficient mice with cisplatin-induced AKI ameliorated both renal function and tubular cell injury, and prolonged survival. Transplanted CB-MSCs localized in peritubular areas, limited capillary alterations and neutrophil infiltration.

View Article and Find Full Text PDF

In this study, we investigated whether mesenchymal stem cells (MSC) had immunomodulatory properties in solid organ allotransplantation, using a semiallogeneic heart transplant mouse model, and studied the mechanism(s) underlying MSC tolerogenic effects. Either single (portal vein, day -7) or double (portal vein, day -7 and tail vein, day -1) pretransplant infusions of donor-derived B6C3 MSC in B6 recipients induced a profound T cell hyporesponsiveness and prolonged B6C3 cardiac allograft survival. The protolerogenic effect was abrogated when donor-derived MSC were injected together with B6C3 hematopoietic stem cells (HSC), suggesting that HSC negatively impact MSC immunomodulatory properties.

View Article and Find Full Text PDF

Transplantation of bone marrow mesenchymal stem cells (BM-MSC) or stromal cells from rodents has been identified as a strategy for renal repair in experimental models of acute kidney injury (AKI), a highly life-threatening clinical setting. The therapeutic potential of BM-MSC of human origin has not been reported so far. Here, we investigated whether human BM-MSC treatment could prevent AKI induced by cisplatin and prolong survival in an immunodeficient mouse model.

View Article and Find Full Text PDF

In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments with MSC and cisplatin-injured proximal tubular epithelial cells (PTEC). Exposure of PTEC to cisplatin markedly reduced cell viability at 4 days, but co-culture with MSC provided a protective effect by promoting tubular cell proliferation.

View Article and Find Full Text PDF

Adult stem cells have been characterized in several tissues as a subpopulation of cells able to maintain. generate, and replace terminally differentiated cells in response to physiological cell turnover or tissue injury. Little is known regarding the presence of stem cells in the adult kidney but it is documented that under certain conditions, such as the recovery from acute injury, the kidney can regenerate itself by increasing the proliferation of some resident cells.

View Article and Find Full Text PDF

Esterified hyaluronic acid (HYAFF) is routinely used for clinical tissue engineering applications such as skin and cartilage. In a previous study we developed a technique for in vitro generation of cylindrical constructs from cellularized HYAFF flat sheets. In the present investigation we studied the possibility to improve mechanical properties of this vascular construct by the addition of sodium ascorbate (SA).

View Article and Find Full Text PDF

Esterified hyaluronic acid (HYAFF) is routinely used for clinical tissue-engineering applications such as skin and cartilage. The material is degraded by neotissue formation and degradation products are highly biocompatible. In the present article we investigate the possibility to culture vascular smooth muscle cells on this biodegradable material for the generation of tubular constructs to be used for vascular tissue engineering.

View Article and Find Full Text PDF