Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere.
View Article and Find Full Text PDFProteins are rapidly and dynamically post-transcriptionally modified as cells respond to changes in their environment. For example, protein phosphorylation is mediated by kinases while dephosphorylation is mediated by phosphatases. Quantifying and predicting interactions between kinases, phosphatases, and target proteins over time will aid the study of signaling cascades under a variety of environmental conditions.
View Article and Find Full Text PDFCapturing cell-to-cell signals in a three-dimensional (3D) environment is key to studying cellular functions. A major challenge in the current culturing methods is the lack of accurately capturing multicellular 3D environments. In this study, we established a framework for 3D bioprinting plant cells to study cell viability, cell division, and cell identity.
View Article and Find Full Text PDFStem cells give rise to the entirety of cells within an organ. Maintaining stem cell identity and coordinately regulating stem cell divisions is crucial for proper development. In plants, mobile proteins, such as WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and SHORTROOT (SHR), regulate divisions in the root stem cell niche.
View Article and Find Full Text PDFFluorescence microscopy can produce large quantities of data that reveal the spatiotemporal behavior of gene expression at the cellular level in plants. Automated or semi-automated image analysis methods are required to extract data from these images. These data are helpful in revealing spatial and/or temporal-dependent processes that influence development in the meristematic region of plant roots.
View Article and Find Full Text PDFImaging technologies have been used to understand plant genetic and developmental processes, from the dynamics of gene expression to tissue and organ morphogenesis. Although the field has advanced incredibly in recent years, gaps remain in identifying fine and dynamic spatiotemporal intervals of target processes, such as changes to gene expression in response to abiotic stresses. Lightsheet microscopy is a valuable tool for such studies due to its ability to perform long-term imaging at fine intervals of time and at low photo-toxicity of live vertically oriented seedlings.
View Article and Find Full Text PDFComputational solutions enable plant scientists to model protein-mediated stress responses and characterize novel gene functions that coordinate responses to a variety of abiotic stress conditions. Recently, density functional theory was used to study proteins active sites and elucidate enzyme conversion mechanisms involved in iron deficiency responsive signaling pathways. Computational approaches for protein homology modeling and the kinetic modeling of signaling pathways have also resolved the identity and function in proteins involved in iron deficiency signaling pathways.
View Article and Find Full Text PDFExposure of plants to abiotic stresses, whether individually or in combination, triggers dynamic changes to gene regulation. These responses induce distinct changes in phenotypic characteristics, enabling the plant to adapt to changing environments. For example, iron deficiency and heat stress have been shown to alter root development by reducing primary root growth and reducing cell proliferation, respectively.
View Article and Find Full Text PDF