Adsorption column blockage due to solid adsorbent material is prevalent in laboratory-scale applications. Creating composite materials with stable geometries offers a viable solution. By crafting hydrogel beads using sodium alginate (Alg) and a bio-source like activated carbon (RMCA-P), it becomes possible to effectively eliminate agricultural pollutants, including the pesticide 2,4-D, from aqueous solutions.
View Article and Find Full Text PDFThis present study depicts the successful employment of fixed-bed column for total chromium removal from tannery wastewater in dynamic mode using sodium alginate-powdered marble beads (SA-Marble) as adsorbent. The SA-Marble composite beads prepared were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Brunauer, Emmett and Teller (BET) method. The adsorption process performance of this bio-sorbent was examined in batches and columns for real effluent (tannery wastewater).
View Article and Find Full Text PDFThe annual production of wastewater from the olive table industry poses a serious problem owing to its high organic matter load, which is highly concentrated in phenolic compounds (PCs) and inorganic materials. This research used adsorption to recover PCs from table olive wastewater (TOWW). Activated carbon was employed as a novel adsorbent.
View Article and Find Full Text PDFOlive oil mill wastewater (OMWW) poses an undeniable environmental problem due to its high organic loads and phenolic compound (PC) content. This study determined the optimal conditions for preparing a new bio-sorbent from olive pomace (OP) and the adsorptive treatment of OMWW by this bio-sorbent. The activation reaction was performed with hydrogen peroxide.
View Article and Find Full Text PDF