Publications by authors named "Imane Abbas"

Background: Calvarial defects in NF1 are rare and lack standardized management guidelines. This study seeks to shed light on calvarial defects in NF1 patients with extensive skull erosion.

Methods: This case report focuses on clinical and radiological presentations and surgical interventions during six years of follow-up, comparing the results with those in the literature.

View Article and Find Full Text PDF

The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections.

View Article and Find Full Text PDF

New toxicological research is still urgently needed to improve the current knowledge about the induction of some underlying mechanisms of toxicity by the different chemical fractions of ambient particulate matter (PM). This in vitro study sought also to better evaluate and compare the respective toxicities of fine particles (PM) and their inorganic and organic chemical fractions, and the respective toxicities of the organic chemical fractions of PM and quasi-ultrafine particles (PM). Human bronchial epithelial BEAS-2B cells were also exposed for 6-48 h to relatively low doses of PM and their organic extractable (OEM) and non-extractable (NEM) fractions, and the organic extractable fraction (OEM) of PM.

View Article and Find Full Text PDF

To date no study has been able to clearly attribute the observed toxicological effects of atmospheric particles (PM) to a specific class of components. The toxicity of both the organic extractable matter (OEM) and non-extractable matter (NEM) of fine particles (PM) was compared to that of PM in its entirety on normal human epithelial bronchial BEAS-2B cells in culture. The specific effect of the quasi-ultrafine fraction (PM) was assessed, by comparing the responses of cells exposed to the PM and PM organic extractable matter, OEM and OEM respectively.

View Article and Find Full Text PDF

Lipid disorders have been associated with glomerulopathies, a distinct type of renal pathologies, such as nephrotic syndrome. Global analyses targeting kidney lipids in this pathophysiologic context have been extensively performed, but most often regardless of the architectural and functional complexity of the kidney. The new developments in mass spectrometry imaging technologies have opened a promising field in localized lipidomic studies focused on this organ.

View Article and Find Full Text PDF

A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells.

View Article and Find Full Text PDF

Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.

View Article and Find Full Text PDF

In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis.

View Article and Find Full Text PDF

To extend current knowledge on the underlying mechanisms of air pollution particulate matter (PM(2.5))-induced human lung toxicity, the metabolic activation of polycyclic aromatic hydrocarbons (PAH) within PM(2.5) and PAH-DNA bulky stable adduct patterns in human alveolar macrophage (AM) and/or human lung epithelial L132 cells in mono- and cocultures were studied.

View Article and Find Full Text PDF

To improve the knowledge of the underlying mechanisms implying in air pollution Particulate Matter (PM)-induced lung toxicity in humans, we were interested in the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation in the L132 target human lung epithelial cell model. The most toxicologically relevant physical and chemical characteristics of air pollution PM(2.5) collected in Dunkerque, a French highly-industrialized sea-side city, were determined.

View Article and Find Full Text PDF

Lung cancer still remains the most frequent type of cancer all around the world and the leading cause of cancer-related death. Even if tobacco use takes a major part in etiology of lung cancer, other explanations like genetic and lifestyle factors, and occupational and/or environmental exposure to carcinogens have to be considered. Hence, in this study, we were interested in the ability of in vitro short-term exposure to air pollution Particulate Matter (PM) to induce genomic alterations in Dunkerque City's PM(2.

View Article and Find Full Text PDF

The overarching goals were: (i) to develop an in vitro coculture model, including two relevant lung target cells: human alveolar macrophage (AM) isolated from bronchoalveolar lavage fluid, and immortalized cells originated from the normal lung tissue of a human embryo (L132 cell line), as a future strategy for near-realistic exposures to air pollution particulate matter (PM), and (ii) to study the gene expression of volatile organic compound (VOC) and/or polycyclic aromatic hydrocarbons (PAH)-metabolizing enzymes in this in vitro coculture model. Human AM and/or L132 cells in mono- and coculture were exposed for 24, 48 and 72h to Dunkerque City's PM2.5 at its lethal concentrations at 10% and 50% (i.

View Article and Find Full Text PDF

To improve the knowledge of the underlying mechanisms of action involved in air pollution Particulate Matter (PM)-induced toxicity in human lungs, with a particular interest of the crucial role played by coated-organic chemicals, we were interested in the metabolic activation of Polycyclic Aromatic Hydrocarbons (PAH)-coated onto air pollution PM, and, thereafter, the formation of PAH-DNA adducts in a human lung epithelial cell model (A549 cell line). Cells were exposed to Dunkerque city's PM(2.5) at its Lethal Concentrations at 10% and 50% (i.

View Article and Find Full Text PDF

To contribute to improve the knowledge of the underlying mechanisms of action involved in air pollution particulate matter (PM)-induced cytotoxicity, we were interested in the metabolic activation of volatile organic compounds (VOC) and/or polycyclic aromatic hydrocarbons (PAH) coated onto Dunkerque City's PM2.5 in human alveolar macrophages (AM) isolated from bronchoalveolar lavage fluid (BALF). This in vitro cell lung model is closer to the normal in vivo situation than other lung cell lines, notably in the characteristics that AM display in terms of gene expression of phase I and phase II-metabolizing enzymes.

View Article and Find Full Text PDF