As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of a new group of 1, 4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (COOR2) at C-3 position of 1, 4-dihydropyridine, displayed selective inhibitory activity against COX-2 isozyme. Among them, compound 5e was identified as the most potent and selective COX-2 inhibitor with IC50 value of 0.
View Article and Find Full Text PDFA group of regioisomeric 5-oxo-1,4,5,6,7,8 hexahydroquinoline derivatives possessing a COX-2 SO2Me pharmacophore at the para position of the C-2 or C-4 phenyl ring, in conjunction with a C-4 or C-2 phenyl (4-H) or substituted-phenyl ring (4-F,4-Cl,4-Br,4-OMe,4-Me, 4-NO2), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target 5-oxo-1,4,5,6,7,8 hexahydroquinolines were synthesized via a Hansch condensation reaction. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 7,8-dihydro- 7,7-dimethyl-2-(4-methoxyphenyl)-4-(4-(methylsulfonyl)phenyl)quinolin-5(1H,4H,6H)- one (9c) as a potent COX-2 inhibitor (IC50 = 0.
View Article and Find Full Text PDF