Virtual sensing is the process of using available data from real sensors in combination with a model of the system to obtain estimated data from unmeasured points. In this article, different strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces applied in different directions. Stochastic algorithms (Kalman filter and augmented Kalman filter) and deterministic algorithms (least-squares strain estimation) are tested with different input sensor configurations.
View Article and Find Full Text PDF