Publications by authors named "Iman Kamali Sarvestani"

Deep brain stimulation targeting the subthalamic nucleus (STN-DBS) is an effective surgical treatment for the motor symptoms of Parkinson's disease (PD), the precise neuronal mechanisms of which both at molecular and network levels remain a topic of debate. Here we employ two transgenic mouse lines, combining translating ribosomal affinity purification (TRAP) with bacterial artificial chromosome expression (Bac), to selectively identify changes in translational gene expression in either Drd1a-expressing striatonigral or Drd2-expressing striatopallidal medium spiny neurons (MSNs) of the striatum following STN-DBS. 6-hydroxydopamine lesioned mice received either 5 days stimulation via a DBS electrode implanted in the ipsilateral STN or 5 days sham treatment (no stimulation).

View Article and Find Full Text PDF

Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus.

View Article and Find Full Text PDF

This study addresses mechanisms for the generation and selection of visual behaviors in anamniotes. To demonstrate the function of these mechanisms, we have constructed an experimental platform where a simulated animal swims around in a virtual environment containing visually detectable objects. The simulated animal moves as a result of simulated mechanical forces between the water and its body.

View Article and Find Full Text PDF

Based on known anatomy and physiology, we present a hypothesis where the basal ganglia motor loop is hierarchically organized in two main subsystems: the arbitration system and the extension system. The arbitration system, comprised of the subthalamic nucleus, globus pallidus, and pedunculopontine nucleus, serves the role of selecting one out of several candidate actions as they are ascending from various brain stem motor regions and aggregated in the centromedian thalamus or descending from the extension system or from the cerebral cortex. This system is an action-input/action-output system whose winner-take-all mechanism finds the strongest response among several candidates to execute.

View Article and Find Full Text PDF