Publications by authors named "Imae T"

Purpose: We aimed to predict the neurological prognosis of cardiac arrest (CA) patients using quantitative imaging biomarkers extracted from brain computed tomography images.

Methods: We retrospectively enrolled 86 CA patients (good prognosis, 32; poor prognosis, 54) who were treated at three hospitals between 2017 and 2019. We then extracted 1131 quantitative imaging biomarkers from whole-brain and local volumes of interest in the computed tomography images of the patients.

View Article and Find Full Text PDF

The photocatalytic conversion of CO gas into energy-dense hydrocarbons holds the potential to address both environmental and energy problems. Catalysts consisting of CuO clusters/nanoparticles and ZnO nanorods on a metallic nanotube array (MeNTA) silicon substrate were utilized for CO reduction. The surface of the catalysts was modified with 3-amino-propyltriethoxysilane (APTES), the amine terminal of which can selectively bind CO gas.

View Article and Find Full Text PDF

This study introduces a new, facile method to synthesize silver clusters from aqueous silver ion solution by using high intensity femtosecond pulse laser irradiation. The particles obtained in the absence of reducing or capping agents are 1-17 nm in size and presented quantum properties, as characterized by fluorescence, but did not exhibit plasmon signals, which is not a common characteristic of conventional silver nanoparticles. In a further development, small silver quantum clusters (∼1 nm) were bound to wet-spun filaments of cellulose nanofibrils by pulsed laser irradiation.

View Article and Find Full Text PDF

The purpose of the study is to investigate the variation in Hounsfield unit (HU) values calculated using dual-energy computed tomography (DECT) scanners. A tissue characterization phantom inserting 16 reference materials were scanned three times using DECT scanners [dual-layer CT (DLCT), dual-source CT (DSCT), and fast kilovoltage switching CT (FKSCT)] changing scanning conditions. The single-energy CT images (120 or 140 kVp), and virtual monochromatic images at 70 keV (VMI) and 140 keV (VMI) were reconstructed, and the HU values of each reference material were measured.

View Article and Find Full Text PDF

Electroactive filament electrodes were synthesized by wet-spinning of cellulose nanofibrils (CNF) followed by femtosecond pulse laser deposition of ZnO (CNF@ZnO). A layer of conducting conjugated polymers was further adsorbed by polymerization of either pyrrole or aniline, yielding systems optimized for electron conduction. The resultant hybrid filaments were thoroughly characterized by imaging, spectroscopy, electrochemical impedance, and small- and wide-angle X-ray scattering.

View Article and Find Full Text PDF
Article Synopsis
  • The study assessed the geometric accuracy of radiation focal point (RFP) and cone-beam computed tomography (CBCT) in the ICON Leksell Gamma Knife system over a span of 544 days.
  • It involved 269 analyses where RFP deviations from the unit center point (UCP) and positions of four ball bearings were measured, revealing minimal deviations in all three spatial dimensions.
  • Notably, deviations were significantly improved after the cobalt-60 source replacement, showing consistent accuracy within 0.1 mm over the long-term period.
View Article and Find Full Text PDF

Purpose: To explore the potential of quantitative parameters of the hydrogel spacer distribution as predictors for separating the rectum from the planning target volume (PTV) in linear-accelerator-based stereotactic body radiotherapy (SBRT) for prostate cancer.

Methods: Fifty-five patients underwent insertion of a hydrogel spacer and were divided into groups 1 and 2 of the PTV separated from and overlapping with the rectum, respectively. Prescribed doses of 36.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore the effectiveness of using cone-beam computed tomography (CBCT)-based delta-radiomics to predict outcomes in patients with esophageal squamous cell cancer (ESCC) undergoing concurrent chemoradiotherapy (CCRT).
  • Data was collected from 26 ESCC patients, with CBCT images analyzed at five different treatment time points to extract radiomic features and develop predictive models.
  • Results showed that specific delta-radiomic features significantly differentiated between high- and low-risk patients, indicating strong potential for CBCT-based delta-radiomics as a prognostic tool for ESCC treatment outcomes.
View Article and Find Full Text PDF

Monitoring blood glucose level is critical, since its abnormality leads to diabetes and causes death, even though glucose is essential for human living. Herein, the sensing study was performed on electrochemical nonenzymatic glucose sensors, which are composed of an Au nanocluster (AuNC) catalyst deposited on a metallic nanotube array (MeNTA) and polypyrrole nanowire (PPyNW). The AuNC was produced by irradiating a femtosecond pulse laser to the Au precursor solution, and it is a simple and facile method.

View Article and Find Full Text PDF

The motion of magnetic particles under magnetic fields is an object to be solved in association with basic and practical phenomena. Movement phenomena of magnetite-encapsulated graphene particles at air-water interfaces were evaluated by manufacturing a feedback control system of the magnetic field to cause the motion of particles due to magnetic torque. A homogeneous magnetic field was generated using two pairs of electromagnets located perpendicular to each other, which were connected to an electronic switch.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to develop a virtual CBCT simulator with a head and neck (HN) human phantom library and to demonstrate the feasibility of elemental material decomposition (EMD) for quantitative CBCT imaging using this virtual simulator.

Methods: The library of 36 HN human phantoms were developed by extending the ICRP 110 adult phantoms based on human age, height, and weight statistics. To create the CBCT database for the library, a virtual CBCT simulator that simulated the direct and scattered X-ray on a flat panel detector using ray-tracing and deep-learning (DL) models was used.

View Article and Find Full Text PDF

In this work, we demonstrated a novel cancer antigen 125 (CA125) biomarker detection based on electrochemical immunosensor. The biomarker on conductive composite materials of carbon ink/carbon dot/zine oxide (C-ink/CD/ZnO) was employed as an electrode platform by using ITO substrate to enhance the interaction of antibodies (Ab) with supporting catalytic performance of ZnO as a labeling signal molecule. They were a scientist attention for biosensor with chemical stability, strong biocompatibility, high conductive signal, and accuracy.

View Article and Find Full Text PDF

Combination therapy for cancer is expected for the synergetic effect of different treatments, and the development of promising carrier materials is demanded for new therapeutics. In this study, nanocomposites including functional nanoparticles (NPs) such as samarium oxide NP for radiotherapy and gadolinium oxide NP as a magnetic resonance imaging agent were synthesized and chemically combined with iron oxide NP-embedded or carbon dot-coating iron oxide NP-embedded carbon nanohorn carriers, where iron oxide NP is a hyperthermia reagent and carbon dot exerts effects on photodynamic/photothermal treatments. These nanocomposites exerted potential for delivery of anticancer drugs (doxorubicin, gemcitabine, and camptothecin) even after being coated with poly(ethylene glycol).

View Article and Find Full Text PDF

Radiation therapy plays an important role in cancer treatment along with surgery and systemic therapy. The total dose of radiation therapy is divided into small doses, and the treatment is typically delivered once a day. The total treatment period can need several weeks or more, and it is necessary to deliver the radiation dose to the target volume within the patient precisely each time.

View Article and Find Full Text PDF

The prognosis of castration-resistant prostate cancer (CRPC) is technically scarce; therefore, a novel treatment for CRPC remains warranted. To this end, hyperthermia (HT) was investigated as an alternative therapy. In this study, the analysis focused on the association between CRPC and heat shock protein nuclear import factor "hikeshi (HIKESHI)", a factor of heat tolerance.

View Article and Find Full Text PDF

The high performance of perovskite solar cells was produced with the help of an electron transport layer (ETL) and hole transport layer. The film ETL (mesoporous (meso)-TiO/carbon dot) boosted the efficiency of the perovskite solar cells. A perovskite cell was fabricated by a coating of carbon dot on a meso-TiO ETL.

View Article and Find Full Text PDF

This work reports cascade Förster resonance energy transfer (FRET)-based n-type (ZnO) and p-type (NiO) dye-sensitized solar cells (DSSCs), discussing approaches to enhance their overall performance. Although DSSCs suffer from poorer performance than other solar cells, the use of composites with carbon dot (Cdot) can enhance the power conversion efficiency (PCE) of DSSCs. However, further improvements are demanded through molecular design to stimulate DSSCs.

View Article and Find Full Text PDF

Carbon dots (Cdots) are known as photosensitizers in which the nitrogen doping is able to improve the oxygen-photosensitization performance and singlet-oxygen generation. Herein, the characteristics of nanoconjugates of nitrogen-doped Cdots and doxorubicin were compared with the property of nitrogen-doped Cdots alone. The investigation was performed for the evaluation of pH-dependent zeta potential, quantum yield, photosensitization efficiency and singlet-oxygen generation, besides spectroscopy (UV-visible absorption and fluorescence spectra) and cytotoxicity on cancer model (HeLa cells).

View Article and Find Full Text PDF

Non-noble metal-based bifunctional electrocatalysts may be a promising new resource for electrocatalytic water-splitting devices. In this work, transition metal (cobalt)-incorporated graphitic carbon nitride was synthesized and fabricated in electrodes for use as bifunctional catalysts. The optimum catalytic activity of this bifunctional material for the hydrogen evolution reaction (HER), which benefitted at a cobalt content of 10.

View Article and Find Full Text PDF

Graphene oxide (GO), single-walled carbon nanohorn (CNHox), and nitrogen-doped CNH (N-CNH) were functionalized with fluorinated poly(ethylene glycol) (-PEG) and/or with a fluorinated dendrimer (-DEN) to prepare a series of assembled nanocomposites (GO/-PEG, CNHox/-PEG, N-CNH/-PEG, N-CNH/-DEN, and N-CNH/-DEN/-PEG) that provide effective multisite O reservoirs. In all cases, the O uptake increased with time and saturated after 10-20 min. When graphitic carbons (GO and CNHox) were coated with -PEG, the O uptake doubled.

View Article and Find Full Text PDF

A critical factor in developing an efficient photosensitizer-gold nanoparticle (PS-AuNP) hybrid system with improved plasmonic photosensitization is to allocate a suitable space between AuNPs and PS. Poly(amidoamine) (PAMAM) dendrimer is selected as a spacer between the PS and confeito-like gold nanoparticles (confeito-AuNPs), providing the required distance (≈2.5-22.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in deep learning have significantly improved medical imaging, but acquiring large training datasets is costly and limiting; hence, a new CT modality conversion method was proposed that requires only a few unsupervised images.
  • The method utilizes a cycle-consistency generative adversarial network (CycleGAN) and has been tailored specifically for CT images, allowing conversion from megavoltage computed tomography (MVCT) to kilovoltage computed tomography (kVCT) images using smaller data sets from head and neck cancer patients.
  • Results show that the model only needs a few hundred images for training, effectively preserving image quality and structure, while helping medical professionals enhance precision in contouring during clinical applications.
View Article and Find Full Text PDF

Background: The aim of this study was to clarify the association between intrafractional prostate shift and hydrogel spacer.

Methods: Thirty-eight patients who received definitive volumetric modulated arc therapy (VMAT)-stereotactic body radiation therapy (SBRT) for prostate cancer with prostate motion monitoring in our institution in 2018-2019 were retrospectively evaluated. In order to move the rectum away from the prostate, hydrogel spacer (SpaceOAR system, Boston Scientific, Marlborough, the United States) injection was proposed to the patients as an option in case of meeting the indication of use.

View Article and Find Full Text PDF

Despite various studies on the preparation of different types and sizes of ZnO, the synthesis of quantum clusters of bare metal oxide has rarely been reported. The research goals of this study were to create clusters/nanoparticles using femtosecond laser irradiation to increase the electrical, optical, and chemical functionalities of ZnO. Femtosecond pulse laser irradiation deposition technology was used here to produce ZnO from a precursor in water (pH = 5.

View Article and Find Full Text PDF

Purpose: The use of nanocarriers to improve the delivery and efficacy of antimetastatic agents is less explored when compared to cytotoxic agents. This study reports the entrapment of an antimetastatic Signal Transducer and Activator of Transcription 3 (STAT3) dimerization blocker, Stattic (S) into a chitosan-coated-poly(lactic-co-glycolic acid) (C-PLGA) nanocarrier and the improvement on the drug's physicochemical, in vitro and in vivo antimetastatic properties post entrapment.

Methods: In vitro, physicochemical properties of the Stattic-entrapped C-PLGA nanoparticles (S@C-PLGA) and Stattic-entrapped PLGA nanoparticles (S@PLGA, control) in terms of size, zeta potential, polydispersity index, drug loading, entrapment efficiency, Stattic release in different medium and cytotoxicity were firstly evaluated.

View Article and Find Full Text PDF