Publications by authors named "Imad Shams"

Telomere shortening or loss of shelterin components activates DNA damage response (DDR) pathways, leading to a replicative senescence that is usually coupled with a senescence-associated secretory phenotype (SASP). Recent studies suggested that telomere aberration that activates DDR may occur, irrespective of telomere length or loss of shelterin complex. The blind mole-rat () is a subterranean rodent with exceptional longevity, and its cells demonstrate an uncoupling of senescence and SASP inflammatory components.

View Article and Find Full Text PDF

Subterranean blind mole rat, , has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory mediators. Since senescence can propagate through paracrine factors, we hypothesize that conditioned medium (CM) from senescent fibroblasts can transmit the senescent phenotype to cancer cells without inducing an inflammatory response, thereby suppressing malignant behavior.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)- and hypersensitive response (HR)-mediated cell death have long been known to play critical roles in plant immunity to pathogens. Wheat powdery mildew caused by f. sp.

View Article and Find Full Text PDF

Oxidative metabolism is fine-tuned machinery that combines two tightly coupled fluxes of glucose and glutamine-derived carbons. Hypoxia interrupts the coordination between the metabolism of these two nutrients and leads to a decrease of the system efficacy and may eventually cause cell death. The subterranean blind mole rat, , is an underexplored, underground, hypoxia-tolerant mammalian group which spends its life under sharply fluctuating oxygen levels.

View Article and Find Full Text PDF

The bioenergetics of the vast majority of terrestrial mammals evolved to consuming glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However, some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, , have adjusted their homeostasis to continuous function under severe hypoxic environment. The exploration of hypoxia-tolerant species metabolic strategies provides a better understanding of the adaptation to hypoxia.

View Article and Find Full Text PDF

In various eukaryotes, supernumerary B chromosomes (Bs) are an optional genomic component that affect their integrity and functioning. In the present study, the impact of Bs on the current changes in the genome of goatgrass, , was addressed. Individual plants from contrasting populations with and without Bs were explored using fluorescence in situ hybridization.

View Article and Find Full Text PDF

The blind mole rat (Spalax) is a wild, long-lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence-associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response.

View Article and Find Full Text PDF

Telomere dynamics have been found to be better predictors of survival and mortality than chronological age. Telomeres, the caps that protect the end of linear chromosomes, are known to shorten with age, inducing cell senescence and aging. Furthermore, differences in age-related telomere attrition were established between short-lived and long-lived organisms.

View Article and Find Full Text PDF

Background: Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue hypoxia happens when there's not enough oxygen in cells, leading to too much calcium entering them, which can cause cell death.
  • The blind mole rat, Spalax, has special features that help it live in low-oxygen areas, including a unique receptor that controls calcium flow.
  • Research shows that Spalax's receptors allow less calcium to enter cells during low-oxygen situations compared to regular rats and mice, helping to protect the cells from damage.
View Article and Find Full Text PDF

Adipose-derived stem cells (ADSCs) are recruited by cancer cells from the adjacent tissue, and they become an integral part of the tumor microenvironment. Here, we report that ADSCs from the long-living, tumor-resistant blind mole rat, Spalax, have a low ability to migrate toward cancer cells compared with cells from its Rattus counterpart. Tracking 5-ethynyl-2'-deoxyuridine (EdU)-labeled ADSCs, introduced to tumor-bearing nude mice, toward the xenografts, we found that rat ADSCs intensively migrated and penetrated the tumors, whereas only a few Spalax ADSCs reached the tumors.

View Article and Find Full Text PDF

Different subtypes of macrophages have been shown to participate in different stages of inflammation and tissue repair. In the late stage of tissue repair, the macrophages, following their engulfment of apoptotic neutrophils, acquire a new phenotype termed alternatively activated macrophages. These macrophages produce growth factors, such as vascular endothelial growth factor (VEGF), that facilitate the angiogenic response as part of tissue restoration.

View Article and Find Full Text PDF

Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes.

View Article and Find Full Text PDF

Blind mole rats of the genus are the only mammalian species to date for which spontaneous cancer has never been reported and resistance to carcinogen-induced cancers has been demonstrated. However, the underlying mechanisms are still poorly understood. The fact that spp.

View Article and Find Full Text PDF

Transposable elements (TE) and tandem repeats (TR) compose the largest fraction of the plant genome. The abundance and repatterning of repetitive DNA underlie intrapopulation polymorphisms and intraspecific diversification; however, the dynamics of repetitive elements in ontogenesis is not fully understood. Here, we addressed the genotype-specific and tissue-specific abundances and dynamics of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons and species-specific Spelt1 tandem repeat in wild diploid goatgrass, Aegilops speltoides Tausch.

View Article and Find Full Text PDF

The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue.

View Article and Find Full Text PDF

The subterranean blind mole rat, Spalax, experiences acute hypoxia-reoxygenation cycles in its natural subterranean habitat. At the cellular level, these conditions are known to promote genomic instability, which underlies both cancer and aging. However, Spalax is a long-lived animal and is resistant to both spontaneous and induced cancers.

View Article and Find Full Text PDF

Background: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage.

View Article and Find Full Text PDF

The Nrf2-Keap1 pathway is crucial for the cellular antioxidant and hypoxia response in vertebrates. Deciphering its modifications in hypoxia-adapted animals will help understand its functionality under environmental stress and possibly allow for knowledge transfer into biomedical research. The blind mole rat Spalax, a long-lived cancer-resistant rodent, lives in burrows underground and is adapted to severely hypoxic conditions.

View Article and Find Full Text PDF

The discovery of pits/caveolae in the plasmalemma advanced the study of macromolecule internalization. "Transcytosis" describes the transport of macromolecular cargo from one front of a polarized cell to the other within membrane-bounded carrier(s), via endocytosis, intracellular trafficking and exocytosis. Clathrin-mediated transcytosis is used extensively by epithelial cells, while caveolae-mediated transcytosis mostly occurs in endothelial cells.

View Article and Find Full Text PDF

The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors.

View Article and Find Full Text PDF

Background: Subterranean blind mole rats (Spalax) are hypoxia tolerant (down to 3% O2), long lived (>20 years) rodents showing no clear signs of aging or aging related disorders. In 50 years of Spalax research, spontaneous tumors have never been recorded among thousands of individuals. Here we addressed the questions of (1) whether Spalax is resistant to chemically-induced tumorigenesis, and (2) whether normal fibroblasts isolated from Spalax possess tumor-suppressive activity.

View Article and Find Full Text PDF

The tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway.

View Article and Find Full Text PDF