In a typical course of drug development, thorough pharmacokinetic (PK) studies are essential for the determination of drug biodistribution, dosage and efficacy without toxicity. For vaccines, however, unless a new formulation component is used, most regulatory agencies rule out the need for studying the biodistribution of the vaccine antigenic material per se, and only dose-immunogenicity studies are performed. This is because traditional vaccines are meant to directly induce immunogenicity by locally recruiting immunocytes that will carry on with the pursuing immunogenic processes.
View Article and Find Full Text PDFA novel bioinformatic approach for drug repurposing against emerging viral epidemics like Covid-19 is described. It exploits the COMPARE algorithm, a public program from the National Cancer Institute (NCI) to sort drugs according to their patterns of growth inhibitory profiles from a diverse panel of human cancer cell lines. The data repository of the NCI includes the growth inhibitory patterns of more than 55,000 molecules.
View Article and Find Full Text PDFThere is considerable interest in biomedical applications of quantum dot (QD) nanoparticles, in particular their use as imaging agents for diagnostic applications. In order to investigate the in vivo biodistribution and the potential toxicity of quantum dots (QDs), it is crucial to develop pharmacokinetic (PK) models as basis for prediction of QDs exposure profiles over time. Here, we investigated the in vivo biodistribution of novel indium-based QDs in mice for up to three months after intravenous administration and subsequently developed a translational population PK model to scale findings to humans.
View Article and Find Full Text PDFCadmium-free quantum dots (QD) were combined with crystal violet photosensitising dye and incorporated into medical grade polyurethane via a non-covalent dipping process known as 'swell-encapsulation-shrink'. The antibacterial efficacy of the prepared quantum dot-crystal violet polyurethane substrates (QD + CV PU) was investigated under low power visible light illumination at similar intensities (500 lux) to those present in clinical settings. The antibacterial performance of QD + CV PU was superior to the constituent polymer substrates, eliminating ∼99.
View Article and Find Full Text PDFThe rising incidence of antibiotic-resistant infections from contaminated surfaces in hospitals or implanted medical devices has led to increasing interest in new antibacterial surfaces. Photoactivatable surfaces that can generate cytotoxic reactive oxygen species under exposure to ambient light is a promising approach to inactivation of surface-borne microorganisms. There is growing interest in the use of quantum dots (QDs) as light-harvesting agents for photobactericidal applications, but the cadmium in commonly used QDs will restrict clinical application.
View Article and Find Full Text PDFA multi-disciplinary cooperative for nanoparticle-enhanced radiotherapy (NERT) has been formed to review the current status of the field and identify key stages towards translation. Supported by the Colorectal Cancer Healthcare Technologies Cooperative, the cooperative comprises a diverse cohort of key contributors along the translation pathway including academics of physics, cancer and radio-biology, chemistry, nanotechnology and clinical trials, clinicians, manufacturers, industry, standards laboratories, policy makers and patients. Our aim was to leverage our combined expertise to devise solutions towards a roadmap for translation and commercialisation of NERT, in order to focus research in the direction of clinical implementation, and streamline the critical pathway from basic science to the clinic.
View Article and Find Full Text PDFQuantum dot (QD) nanoparticles are highly promising contrast agents and probes for biomedical applications owing to their excellent photophysical properties. However, toxicity concerns about commonly used cadmium-based QDs hinder their translation to clinical applications. In this study we describe the in vivo biodistribution and toxicology of indium-based water soluble QDs in rats following intravenous administration.
View Article and Find Full Text PDFQuantum dots (QDs) are attractive photoluminescence probes for biomedical imaging due to their unique photophysical properties. However, the potential toxicity of QDs has remained a major obstacle to their clinical use because they commonly incorporate the toxic heavy metal cadmium within the core of the QDs. In this work, we have evaluated a novel type of heavy metal-free/cadmium-free and biocompatible QD nanoparticles (bio CFQD(®) nanoparticles) with a good photoluminescence quantum yield.
View Article and Find Full Text PDFAnimal and epidemiological studies reveal that consuming food and beverages rich in polyphenols (e.g., catechins, flavones, and antocyanines) is associated with a lower incidence of cancer, and several molecular mechanisms have been proposed for explaining this effect.
View Article and Find Full Text PDF