Composite materials have become widely used in engineering applications, in order to reduce the overall weight of structures while retaining their required strength. In this work, a composite material consisting of discontinuous glass fibers in a polypropylene matrix is studied at the microstructural level through coupled experiments and simulations, in order to uncover the mechanisms that cause damage to initiate in the microstructure under macroscopic tension. Specifically, we show how hydrostatic stresses in the matrix can be used as a metric to explain and predict the exact location of microvoid nucleation that occurs during damage initiation within the composite's microstructure.
View Article and Find Full Text PDFComposites modified with nanoparticles are of interest to many researchers due to the large surface-area-to-volume ratio of nano-scale fillers. One challenge with nanoscale materials that has received significant attention is the dispersion of nanoparticles in a matrix material. A random distribution of particles often ensures good material properties, especially as it relates to the thermal and mechanical performance of composites.
View Article and Find Full Text PDF