Publications by authors named "Imad A Farhat"

Gelatinised wheat starch, freeze dried and equilibrated at different RH, was aged at different temperatures and for different times. The Tool-Narayanaswamy-Moynihan (TNM) model was used to describe the ageing for all samples under all conditions. Three TNM parameters: x, Δh* and A were determined experimentally using, respectively, the peak shift method (x) and the dependency of T'(f) (the limiting value of T(f)) on the cooling rate (Δh* and A).

View Article and Find Full Text PDF

The influence of temperature on near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopy complicates the industrial applications of both spectroscopic methods. The focus of this study is to analyze and model the effect of temperature variation on NIR spectra and NMR relaxation data. Different multivariate methods were tested for constructing robust prediction models based on NIR and NMR data acquired at various temperatures.

View Article and Find Full Text PDF

The gelation process of lysozyme in water/tetramethylurea in the presence of salt was investigated as a function of temperature and system composition by rheology, infrared spectroscopy, and microcalorimetry. Times and temperatures of gelation were determined from the variation of the storage (G') and loss (G'') moduli. It was found that gelation times follow exponential decays with both protein and tetramethylurea (TMU) concentrations and with temperature.

View Article and Find Full Text PDF

To test whether the extent of physical aging affected the reaction rate, Maillard reaction kinetics were studied in glassy model preservation systems subjected to two different thermal histories. The glass transition temperature and physical aging of the matrix were determined using differential scanning calorimetry, and the normalized heat capacities were modeled using the Tool-Narayanaswamy-Moynihan approach. Samples prepared using the different thermal histories initially had different degrees of aging, but these were practically indistinguishable after 10 h under the reaction conditions (65 degrees C); the samples underwent rapid structural relaxation at that temperature.

View Article and Find Full Text PDF

The physical aging of low water content, amorphous starch/water, maltodextrin/water, and maltose/water mixtures in the glassy state was examined using mechanical testing and calorimetry. Stress relaxation measurements showed that upon storage of the glassy materials there was a time-dependent increase in both flexural modulus and mechanical relaxation time. The mechanical relaxation time increased with depth of quench below the calorimetric glass transition temperature and with aging time at the quench temperature.

View Article and Find Full Text PDF

Two endothermic peaks could be observed for five commercial samples of bovine serum albumin (BSA). The smaller peak observed by differential scanning calorimetry (DSC) corresponded to enthalpy relaxation. This peak was followed on storage of BSA, in its glassy state, after it had been heated above its denaturation temperature.

View Article and Find Full Text PDF

The retrogradation of extruded starches from three different botanical sources was studied in concentrated conditions (34 +/- 1% water) at 25 degrees C using differential scanning calorimetry (DSC) and isothermal calorimetry, Fourier transform infrared spectroscopy (FTIR), and wide-angle X-ray scattering. Potato starch showed the highest rate of retrogradation (approximately 0.17 h(-1)) followed by waxy maize (approximately 0.

View Article and Find Full Text PDF

Mid-infrared spectra of freeze-dried sucrose and lactose systems were acquired over a range of temperatures (30-200 degrees C) and water contents (0-6.3%). Starting from the glassy state, the experimental conditions were selected to cover the main thermal transitions: the glass-rubber transition, the crystallisation and, for some samples, the subsequent melting.

View Article and Find Full Text PDF

On-line techniques were developed to monitor chemical and physical changes occurring during the heating of skim milk powder (SMP). Atmospheric pressure chemical ionization mass spectrometry (APCIMS) followed the generation and release of volatile compounds from SMP in a packed-bed reactor. Operating conditions were optimized to avoid condensation of high boiling compounds such as maltol, and the system was highly reproducible (CV < 7%).

View Article and Find Full Text PDF