Phys Rev Lett
December 2020
The realization of interacting topological states of matter such as fractional Chern insulators (FCIs) in cold atom systems has recently come within experimental reach due to the engineering of optical lattices with synthetic gauge fields providing the required topological band structures. However, detecting their occurrence might prove difficult since transport measurements akin to those in solid state systems are challenging to perform in cold atom setups and alternatives have to be found. We show that for a ν=1/2 FCI state realized in the lowest band of a Harper-Hofstadter model of interacting bosons confined by a harmonic trapping potential, the fractionally quantized Hall conductivity σ_{xy} can be accurately determined by the displacement of the atomic cloud under the action of a constant force which provides a suitable experimentally measurable signal for detecting the topological nature of the state.
View Article and Find Full Text PDFRecent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin.
View Article and Find Full Text PDFNon-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported.
View Article and Find Full Text PDF