This paper proposes a new method to reduce the parameter number of models developed in the Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel Partial Least Square (RKPLS) consists on approximating the retained latent components determined using the Kernel Partial Least Square (KPLS) method by their closest observation vectors.
View Article and Find Full Text PDFThis paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the Singular Value Decomposition (SVD) technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.
View Article and Find Full Text PDF