Transl Vis Sci Technol
December 2021
Purpose: This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent.
View Article and Find Full Text PDFIn the most prevalent retinal diseases, including Stargardt disease and age-related macular degeneration (AMD), byproducts of vitamin A form in the retina abnormally during the vitamin A cycle. Despite evidence of their toxicity, whether these vitamin A cycle byproducts contribute to retinal disease, are symptoms, beneficial, or benign has been debated. We delivered a representative vitamin A byproduct, A2E, to the rat's retina and monitored electrophysiological, histological, proteomic, and transcriptomic changes.
View Article and Find Full Text PDFImpaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle.
View Article and Find Full Text PDFD190N, a missense mutation in rhodopsin, causes photoreceptor degeneration in patients with autosomal dominant retinitis pigmentosa (adRP). Two competing hypotheses have been developed to explain why D190N rod photoreceptors degenerate: (a) defective rhodopsin trafficking prevents proteins from correctly exiting the endoplasmic reticulum, leading to their accumulation, with deleterious effects or (b) elevated mutant rhodopsin expression and unabated signaling causes excitotoxicity. A knock-in D190N mouse model was engineered to delineate the mechanism of pathogenesis.
View Article and Find Full Text PDFAccumulation of fluorescent metabolic byproducts of the visual (retinoid) cycle is associated with photoreceptor and retinal pigment epithelial cell death in both Stargardt disease and atrophic (nonneovascular) age-related macular degeneration (AMD). As a consequence of this observation, small molecular inhibitors of enzymes in the visual cycle were recently tested in clinical trials as a strategy to protect the retina and retinal pigment epithelium in patients with atrophic AMD. To address the clinical translational needs for therapies aimed at both diseases, a workshop organized by the Foundation Fighting Blindness was hosted by the Department of Pharmacology at Case Western Reserve University on February 17, 2017, at the Tinkham Veale University Center, Cleveland, OH, USA.
View Article and Find Full Text PDFGinkgolides are terpene trilactones in Ginkgo biloba, a popular medicinal herb for memory disorders. Although ginkgolides are known for various neurobiological effects, their macromolecular target in brain is unknown. In this work, we employed benzophenone derivatives of ginkgolides to identify their binding target in brain.
View Article and Find Full Text PDFAnimals alter their physiological states in response to their environment. We show that the introduction of a chlorophyll metabolite, a light-absorbing pigment widely consumed in human diets, to Caenorhabditis elegans results in animals whose fat mass can be modulated by exposure to light, despite the worm consuming the same amount of food. In the presence of the chlorophyll metabolite, exposing the worms to light increased adenosine triphosphate, reduced oxidative damage, and increased median life spans, without an effect on animal reproduction.
View Article and Find Full Text PDFWe discuss how an imperfect visual cycle results in the formation of vitamin A dimers, thought to be involved in the pathogenesis of various retinal diseases, and summarize how slowing vitamin A dimerization has been a therapeutic target of interest to prevent blindness. To elucidate the molecular mechanism of vitamin A dimerization, an alternative form of vitamin A, one that forms dimers more slowly yet maneuvers effortlessly through the visual cycle, was developed. Such a vitamin A, reinforced with deuterium (C20-D3-vitamin A), can be used as a non-disruptive tool to understand the contribution of vitamin A dimers to vision loss.
View Article and Find Full Text PDFOne of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration.
View Article and Find Full Text PDFStargardt disease, an ATP-binding cassette, subfamily A, member 4 (ABCA4)-related retinopathy, is a genetic condition characterized by the accelerated accumulation of lipofuscin in the retinal pigment epithelium, degeneration of the neuroretina, and loss of vision. No approved treatment exists. Here, using a murine model of Stargardt disease, we show that the propensity of vitamin A to dimerize is responsible for triggering the formation of the majority of lipofuscin and transcriptional dysregulation of genes associated with inflammation.
View Article and Find Full Text PDFThe eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch's membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration.
View Article and Find Full Text PDFTo construct an intracellular machine, we sought a symbiotic relationship between a photosynthetic green alga and human cells. Human cells selectively take up the minimal eukaryote Nannochloris eukaryotum and the resulting symbionts are able to survive and proliferate. Host cells can utilize N.
View Article and Find Full Text PDFSunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5'-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll.
View Article and Find Full Text PDFPurpose: To determine how the retina uses vitamin A for vision, we studied the flux of oral vitamin A into and out of the swine retina.
Methods: We administered labeled vitamin A to swine daily for 30 days and measured the percent of the labeled vitamin A to native unlabeled vitamin A in the retinal epithelium, neuroretina, plasma, liver, lung, and kidney.
Results: We show that during normal vitamin A homeostasis, the retina rapidly assimilates newly ingested dietary vitamin A, which replaces native vitamin A.
Photochem Photobiol
November 2013
Ubiquinol is a plasma antioxidant. The mechanisms responsible for maintenance of plasma ubiquinol are poorly understood. Here, we show that metabolites of chlorophyll can be found in blood plasma of animals that are given a chlorophyll-rich diet.
View Article and Find Full Text PDFCoenzyme Q plays an integral role in oxygen metabolism and management, and there is a positive correlation between low tissue coenzyme Q concentrations and the progression of many degenerative diseases. Retinal oxidative damage plays a role in the pathogenesis of many degenerative eye diseases; nevertheless, despite the retina's high rate of oxygen metabolism, there is little data relating to retinal coenzyme Q concentrations. In this study, we quantified coenzyme Q in the model bovine eye and determined whether it could function as a retinal lipid antioxidant.
View Article and Find Full Text PDFStargardt disease, also known as juvenile macular degeneration, occurs in approximately one in 10,000 people and results from genetic defects in the ABCA4 gene. The disease is characterized by premature accumulation of lipofuscin in the retinal pigment epithelium (RPE) of the eye and by vision loss. No cure or treatment is available.
View Article and Find Full Text PDFDegenerative eye diseases are the most common causes of untreatable blindness. Accumulation of lipofuscin (granular deposits) in the retinal pigment epithelium (RPE) is a hallmark of major degenerative eye diseases such as Stargardt disease, Best disease, and age-related macular degeneration. The intrinsic reactivity of vitamin A leads to its dimerization and to the formation of pigments such as A2E, and is believed to play a key role in the formation of ocular lipofuscin.
View Article and Find Full Text PDFPurpose: To determine the concentration of coenzyme Q10 (CoQ10) in the human retina.
Methods: Eye tissues were lyophilized and exhaustively extracted with heptane. The extracts were analyzed for CoQ10 by high-performance liquid chromatography (HPLC).
Photochem Photobiol Sci
July 2007
The primary event in vision is light-initiated activation of visual pigments. All visual pigments consist of the protein opsin bound to 11-cis-retinal and are responsible for initiating the transformation of light into an electrical signal. In a mouse model, we show that derivatives of chlorophyll can act as visual pigments initiating the transformation of light into an electrical signal and thus change the primary event in vision to initial activation of a chlorophyll derivative.
View Article and Find Full Text PDFEffective therapies for most solid cancers, especially those that have progressed to metastasis, remain elusive because of inherent and acquired resistance of tumor cells to conventional treatments. Additionally, the effective therapeutic window for many protocols can be very narrow, frequently resulting in toxicity. The present study explores an anticancer strategy that effectively eliminates resistant cancer cells without exerting deleterious effects on normal cells.
View Article and Find Full Text PDFAtmospheric pressure chemical ionization mass spectroscopy (APCI-MS) was used to examine the light-induced oxidation products of retinoic acid under conditions that favor and preclude its aggregation. We observed that in conditions that favor aggregation, i.e.
View Article and Find Full Text PDFOxazolidinone-functionalized enecarbamates react stereoselectively with singlet oxygen to give methyldesoxybenzoin (MDB) in moderate to high enantiomeric excess. The stereochemical outcome depends on the E/Z substrate geometry, temperature, and solvent variables. The analysis of the differential activation parameters suggests a large contribution from the entropy term in determining the enantioselectivity.
View Article and Find Full Text PDFRelative bleaching rates of bovine rhodopsin (rod outer segments) in the presence and absence of seven porphyrins and methylene blue were measured under exposure to lambdamax = 675 nm light, using UV-vis spectroscopy. Rate enhancements on the order of up to three times compared to the bleaching of rhodopsin alone where observed. Fluorescence measurements and other data suggests that the porphyrins act as photosensitizers and excite the visual pigment via electron or triplet state energy transfer.
View Article and Find Full Text PDF