Carboxypeptidase T (CPT) from Thermoactinomyces vulgaris (EC 3.4.17.
View Article and Find Full Text PDFThe carboxypeptidase T (CPT) from Thermoactinomyces vulgaris has an active site structure and 3D organization similar to pancreatic carboxypeptidases A and B (CPA and CPB), but differs in broader substrate specificity. The crystal structures of CPT complexes with the transition state analogs N-sulfamoyl-L-leucine and N-sulfamoyl-L-glutamate (SLeu and SGlu) were determined and compared with previously determined structures of CPT complexes with N-sulfamoyl-L-arginine and N-sulfamoyl-L-phenylalanine (SArg and SPhe). The conformations of residues Tyr255 and Glu270, the distances between these residues and the corresponding ligand groups, and the Zn-S gap between the zinc ion and the sulfur atom in the ligand's sulfamoyl group that simulates a distance between the zinc ion and the tetrahedral sp3-hybridized carbon atom of the converted peptide bond, vary depending on the nature of the side chain in the substrate's C-terminus.
View Article and Find Full Text PDFHere we present a study of the thermal inactivation and the refolding of the proteins in Gram positive Bacillus subtilis. To enable use of bacterial luciferases as the models for protein thermal inactivation and refolding in B. subtilis cells, we developed a variety of bright luminescent B.
View Article and Find Full Text PDFThe crystal structures of carboxypeptidase T (CpT) complexes with phenylalanine and arginine substrate analogs - benzylsuccinic acid and (2-guanidinoethylmercapto)succinic acid - were determined by the molecular replacement method at resolutions of 1.57 Å and 1.62 Å to clarify the broad substrate specificity profile of the enzyme.
View Article and Find Full Text PDFMolecular modeling was addressed to understand different substrate-binding modes and clarify the role of two positively charged residues of the penicillin G acylase active site - βR263 and αR145 - in binding of negatively charged substrates. Although the electrostatic contribution to productive substrate binding was dominated by βR263 rather than αR145, it was found that productive binding was not the only possible mode of substrate placement in the active site. Two extra binding modes - nonproductive and preproductive - were located by means of molecular docking and dynamics with binding affinities comparable with the productive one.
View Article and Find Full Text PDF