We derive a kinetic theory capable of dealing both with large spin-orbit coupling and Kondo screening in dilute magnetic alloys. We obtain the collision integral nonperturbatively and uncover a contribution proportional to the momentum derivative of the impurity scattering S matrix. The latter yields an important correction to the spin diffusion and spin-charge conversion coefficients, and fully captures the so-called side-jump process without resorting to the Born approximation (which fails for resonant scattering), or to otherwise heuristic derivations.
View Article and Find Full Text PDFA classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. Similarly, a phase battery is a quantum device that provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on phase coherence.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
April 2019
Here an approach is presented for reconstructing the distribution of electronic internal quantum pressure in the electronic continuum of solids from the experimental electron density. Using the formalism of the density functional theory, the spatial inner-crystal map of the quantum pressure is obtained. The results are visualized via the indicator of quantum pressure focusing (IQPF) which reveals the regions where the pressure is concentrated or depleted due to quantum effects.
View Article and Find Full Text PDFA Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories.
View Article and Find Full Text PDFWe propose an orbital exchange-correlation functional for applying time-dependent density functional theory to many-electron systems coupled to cavity photons. The time nonlocal equation for the electron-photon optimized effective potential (OEP) is derived. In the static limit our OEP energy functional reduces to the Lamb shift of the ground state energy.
View Article and Find Full Text PDFUsing first principles many-body theory methods (GW+Bethe-Salpeter equation) we demonstrate that the optical properties of graphane are dominated by localized charge-transfer excitations governed by enhanced electron correlations in a two-dimensional dielectric medium. Strong electron-hole interaction leads to the appearance of small radius bound excitons with spatially separated electron and hole, which are localized out of plane and in plane, respectively. The presence of such bound excitons opens the path towards an excitonic Bose-Einstein condensate in graphane that can be observed experimentally.
View Article and Find Full Text PDFBy first-principles methods we analyze the optical response of transparent dense sodium as a function of applied pressure. We discover an unusual kind of charge-transfer exciton that proceeds from the interstitial distribution of valence electrons. The absorption spectrum is strongly anisotropic, which, just at pressures above the metal-insulator transition, manifests as sodium being optically transparent in one direction but reflective in the other.
View Article and Find Full Text PDFMeasurable spectra are often derived from contractions of many-body Green's functions. One calculates hence more information than needed. Here we present and illustrate an in principle exact approach to construct effective potentials and kernels for the direct calculation of electronic spectra.
View Article and Find Full Text PDF