Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors.
View Article and Find Full Text PDFPolymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In this work, a new strategy of arrangement of clusters of magnetic nanoparticles by an external magnetic field in PVDF and PFVD-TrFE matrixes is proposed to increase the voltage coefficient (α) of the magnetoelectric effect.
View Article and Find Full Text PDFThe article is devoted to the theoretical and experimental study of a magnetoelectric (ME) current sensor based on a gradient structure. It is known that the use of gradient structures in magnetostrictive-piezoelectric composites makes it possible to create a self-biased structure by replacing an external magnetic field with an internal one, which significantly reduces the weight, power consumption and dimensions of the device. Current sensors based on a gradient bidomain structure LiNbO (LN)/Ni/Metglas with the following layer thicknesses: lithium niobate-500 μm, nickel-10 μm, Metglas-29 μm, operate on a linear section of the working characteristic and do not require the bias magnetic field.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2020
With the recent thriving of low-power electronic microdevices and sensors, the development of components capable of scavenging environmental energy has become imperative. In this article, we studied bidomain congruent LiNbO (LN) single crystals combined with magnetic materials for dual, mechanical, and magnetic energy harvesting applications. A simple magneto-mechano-electric composite cantilever, with a trilayered long-bar bidomain LN/spring-steel/metglas structure and a large tip proof permanent magnet, was fabricated.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2019
Low-frequency vibration energy harvesting is becoming increasingly important for environmentally friendly and biomedical applications in order to power various wearable and implanted devices. In this paper, we propose the use of piezoelectric congruent LiNbO (LN) single crystals, with an engineered bidomain structure, as an alternative to the widely employed lead-based PZT. We thus compared experimentally the pure vibration energy scavenging performance of square-shaped bidomain and single-domain Y+128°-cut LN crystals and a conventional bimorph soft PZT ceramic bonded to long spring-steel cantilevers as a function of the frequency, load resistance, and tip proof mass.
View Article and Find Full Text PDFWe present a low-frequency sensor for the detection of vibrations, with a sub-nm amplitude, based on a cantilever made of a single-crystalline lithium niobate (LiNbO₃) plate, with a bidomain ferroelectric structure. The sensitivity of the sensor-to-sinusoidal vibrational excitations was measured in terms of displacement as well as of acceleration amplitude. We show a linear behavior of the response, with the vibrational displacement amplitude in the entire studied frequency range up to 150 Hz.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2017
The anisotropic direct magnetoelectric (ME) properties of bilayered composites comprising magnetostrictive metglas foils and single-crystalline piezoelectric bidomain plates of 127°Y-cut LiNbO (LNO) have been studied theoretically and experimentally. The LNO plates possessed an engineered ferroelectric macrobidomain structure with opposite spontaneous polarization vectors. Impedance, ME effect, and equivalent magnetic noise density (EMND) measurements have been performed under quasi-static and resonant conditions.
View Article and Find Full Text PDF