Publications by authors named "Ilya Skachkov"

In the above article [1], the authors regret that there was a mistake in calculating the mol% of the microbubble coating composition used. For all experiments, the unit in mg/mL was utilized and the conversion mistake only came when converting to mol% in order to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.

View Article and Find Full Text PDF

In the above article [1], the authors regret that there was a mistake in calculating the mol% of the microbubble coating composition. For all experiments, the unit in mg/mL was utilized and the conversion mistake only came when converting to mol% in order to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.

View Article and Find Full Text PDF

The chicken embryo and the blood-vessel rich chorioallantoic membrane (CAM) is a valuable in vivo model to investigate biomedical processes, new ultrasound pulsing schemes, or novel transducers for contrast-enhanced ultrasound imaging and microbubble-mediated drug delivery. The reasons for this are the accessibility of the embryo and vessel network of the CAM as well as the low costs of the model. An important step to get access to the embryo and CAM vessels is to take the egg content out of the eggshell.

View Article and Find Full Text PDF

In vivo cell tracking of therapeutic, tumor, and endothelial cells is an emerging field and a promising technique for imaging cardiovascular disease and cancer development. Site-specific labeling of endothelial cells with the MRI contrast agent superparamagnetic iron oxide (SPIO) in the absence of toxic agents is challenging. Therefore, the aim of this in vitro study was to find optimal parameters for efficient and safe SPIO-labeling of endothelial cells using ultrasound-activated CD31-targeted microbubbles for future MRI tracking.

View Article and Find Full Text PDF

Polymeric microcapsules with a light-absorbing dye incorporated in their shell can generate vapor microbubbles that can be spatiotemporally controlled by pulsed laser irradiation. These contrast agents of 6-8 μm in diameter can circulate through the vasculature, offering possibilities for ultrasound (molecular) imaging and targeted therapies. Here, we study the impact of such vapor bubbles on human endothelial cells in terms of cell poration and cell viability to establish the imaging and therapeutic windows.

View Article and Find Full Text PDF

Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available UCAs for high-frequency CEUS (hfCEUS) is largely unknown, while shell properties have been shown to be an important factor for their performance. The aim of our study was to produce UCAs in-house for hfCEUS.

View Article and Find Full Text PDF

Microbubbles (MBs) have been shown to create transient or lethal pores in cell membranes under the influence of ultrasound, known as ultrasound-mediated sonoporation. Several studies have reported enhanced drug delivery or local cell death induced by MBs that are either targeted to a specific biomarker (targeted microbubbles, tMBs) or that are not targeted (non-targeted microbubbles, ntMBs). However, both the exact mechanism and the optimal acoustic settings for sonoporation are still unknown.

View Article and Find Full Text PDF

Angiogenesis is a critical feature of plaque development in atherosclerosis and might play a key role in both the initiation and later rupture of plaques. The precursory molecular or cellular pro-angiogenic events that initiate plaque growth and that ultimately contribute to plaque instability, however, cannot be detected directly with any current diagnostic modality. This study was designed to investigate the feasibility of ultrasound molecular imaging of endothelial αvβ3 expression in vitro and in vivo using αvβ3-targeted ultrasound contrast agents (UCAs).

View Article and Find Full Text PDF

Molecular markers associated with diseases can be visualized and quantified noninvasively with targeted ultrasound contrast agent (t-UCA) consisting of microbubbles (MBs) that can bind to specific molecular targets. Techniques used for quantifying t-UCA assume that all unbound MBs are taken out of the blood pool few minutes after injection and only MBs bound to the molecular markers remain. However, differences in physiology, diseases, and experimental conditions can increase the longevity of unbound MBs.

View Article and Find Full Text PDF

Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy.

View Article and Find Full Text PDF

Ultrasound contrast agents as drug-delivery systems are an emerging field. Recently, we reported that targeted microbubbles are able to sonoporate endothelial cells in vitro. In this study, we investigated whether targeted microbubbles can also induce sonoporation of endothelial cells in vivo, thereby making it possible to combine molecular imaging and drug delivery.

View Article and Find Full Text PDF

Lipid-coated microbubbles are used clinically as contrast agents for ultrasound imaging and are being developed for a variety of therapeutic applications. The lipid encapsulation and shedding of the lipids by acoustic driving of the microbubble has a crucial role in microbubble stability and in ultrasound-triggered drug delivery; however, little is known about the dynamics of lipid shedding under ultrasound excitation. Here we describe a study that optically characterized the lipid shedding behavior of individual microbubbles on a time scale of nanoseconds to microseconds.

View Article and Find Full Text PDF

Atherosclerotic plaque neovascularization was shown to be one of the strongest predictors of future cardiovascular events. Yet, the clinical tools for coronary wall microvasculature detection in vivo are lacking. Here we report an ultrasound pulse sequence capable of detecting microvasculature invisible in conventional intracoronary imaging.

View Article and Find Full Text PDF

A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.

View Article and Find Full Text PDF

The dynamics of coated microbubbles was studied in an in vivo model. Biotinylated lipid-coated microbubbles were prepared in-house and were injected into a chick embryo chorioallantoic membrane (CAM) model on the fifth day of incubation. The microbubbles, ranging between 1.

View Article and Find Full Text PDF