In the realm of predictive toxicology for small molecules, the applicability domain of QSAR models is often limited by the coverage of the chemical space in the training set. Consequently, classical models fail to provide reliable predictions for wide classes of molecules. However, the emergence of innovative data collection methods such as intensive hackathons have promise to quickly expand the available chemical space for model construction.
View Article and Find Full Text PDFThe emergence of new drug-resistant strains of the tuberculosis pathogen (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied.
View Article and Find Full Text PDFThe emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the ability of potential antimycobacterial agents to diffuse through the outer mycolate membrane, the free energy profiles, the corresponding activation barriers, and possible permeability modes of passive transport for a series of known antibiotics, modern antituberculosis drugs, and prospective active drug-like molecules were determined using molecular dynamics simulations with the all-atom force field and potential of mean-force calculations.
View Article and Find Full Text PDFBilayers of mycolic acids (MAs) form the outer membrane of that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 μs) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes.
View Article and Find Full Text PDF