N,N'-Dialkylimidazolium-based ionic liquids are capable of completely dissolving lignocellulosic biomass at elevated temperatures and are considered as promising green solvents for future biorefining technologies. However, the obtained ionic liquid lignin preparations may contain up to several percent nitrogen. This indicates strong interactions between the biopolymer and the IL cation, the nature of which has not yet been clarified.
View Article and Find Full Text PDFLignin is a promising renewable source of valuable organic compounds and environmentally benign materials. However, its involvement in economic circulation and the creation of new biorefining technologies require an understanding of its chemical composition and structure. This problem can be overcome by applying mass spectrometry analytical techniques in combination with advanced chemometric methods for mass spectra processing.
View Article and Find Full Text PDFIn this work, electrospun polylactide fibers with new photostabilizing additives, 4-methyl-2,6-diisobornylphenol (DIBP) and N-isocamphylaniline (NICA), have been tested under the influence of UV-C radiation (254 nm). The changes in the polymers' chemical structure under UV-C radiation were revealed through the increase in absorption in the 3600-3100 cm region in regard to the FTIR spectra. In the samples that were irradiated for 1 h, the stabilizing effect of the photoprotectors became most noticeable as the difference in the content of the hydroxyl groups in stabilized and the pure PLA reached a maximum.
View Article and Find Full Text PDFArctic brown algae are considered a promising industrial-scale source of bioactive sub-stances as polysaccharides, polyphenols, and low-molecular secondary metabolites. Conventional technologies for their processing are focused mainly on the isolation of polysaccharides and involve the use of hazardous solvents. In the present study a "green" approach to the fractionation of brown algae biomass based on the dissolution in ionic liquids (ILs) with 1-butil-3-methylimidazolium (bmim) cation with further sequential precipitation of polysaccharides and polyphenols with acetone and water, respectively, is proposed.
View Article and Find Full Text PDFLignin is the second most abundant biopolymer in nature and a promising renewable feedstock for the production of aromatic compounds, composite materials, sorbents, etc. Being a complex mixture of oligomeric molecules with an irregular structure, natural lignin is an extremely difficult object to study. Its molecular level characterization requires advanced analytical techniques among which atmospheric pressure photoionization Orbitrap mass spectrometry holds a promising place.
View Article and Find Full Text PDFPolycyclic aromatic sulfur-containing compounds are widely distributed in oil, especially in its low-volatile and heavy fractions (resins, asphaltenes), and this dictates the need for their determination when reliable methods for sulfur removing, cleaning and processing oil are developed. In these cases, "soft" ionization mass spectrometry methods, based on electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), are particularly effective. However, aromatic sulfur-containing compounds have low polarity and cannot be readily ionized by these methods.
View Article and Find Full Text PDFWe report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures.
View Article and Find Full Text PDFUnderstanding the chemical structure of lignin in the plant phloem contributes to the systematics of lignins of various biological origins, as well as the development of plant biomass valorization. In this study, the structure of the lignin from birch phloem has been characterized using the combination of three analytical techniques, including 2D NMR, Py-GC/MS, and APPI-Orbitrap-HRMS. Due to the specifics of the phloem chemical composition, two lignin preparations were analyzed: a sample obtained as dioxane lignin (DL) by the Pepper's method and DL obtained after preliminary alkaline hydrolysis of the phloem.
View Article and Find Full Text PDFLignin is the second most abundant biopolymer in nature and is considered an important renewable source of aromatic compounds. One of the most promising analytical methods for molecular characterization of lignin is Orbitrap high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), proved itself in the study of lignins of various origins and their depolymerization products. In this work, the photoionization of lignin using acetone, 1,4-dioxane, and THF as solvents for the biopolymer and APPI dopants providing the generation of protonated and deprotonated molecules of lignin oligomers has been studied.
View Article and Find Full Text PDFLignins of non-woody fast-growing plants cause high interest in recent time as a potential source of raw materials for biorefining. Studying of the lignin structure in shrubs will allow obtaining the information about processes of biosynthesis of these plants and developing methods of their delignification for bioprocessing industry. We studied the structure of raspberry dioxane lignin (Rubus idaeus L.
View Article and Find Full Text PDFIonic liquids (ILs) based on 1-butyl-3-methylimidazolium (bmim) cation have proved to be promising solvents for the fractionation of plant biomass with the production of cellulose and lignin. This study deals with the characterization of lignins isolated from coniferous (spruce) wood using [bmim]OAc and [bmim]MeSO ionic liquids and their binary mixtures with DMSO (80:20). Molecular weight distributions, functional composition, and structural features of IL lignins were studied by size-exclusion chromatography, NMR spectroscopy (1D and 2D) and atmospheric pressure photoionization high-resolution mass spectrometry.
View Article and Find Full Text PDFThe data set covers the results of a study of 96 samples of peat bog soil from the fall place of the first stage of the Cyclone-3 launch vehicle contained unburned toxic rocket fuel 1,1-dimethylhydrazine (UDMH) in the European North of Russia. Soil samples were taken during a helicopter expedition to the "Koida" fall region of Plesetsk Cosmodrome operation zone in October 2015 at different distances from the center of the fall site and from different soil horizons. Samples were analyzed by liquid chromatography with amperometric detection and gas chromatography - tandem mass spectrometry.
View Article and Find Full Text PDFAn ingress of highly toxic rocket fuel 1,1-dimethylhydrazine (UDMH) and its transformation products into environment represents a serious negative impact on the ecosystem, as well as human health. The present research demonstrates the first data on the spatial distribution and quantification of UDMH and its main transformation products (methylhydrazine, hydrazine, 1,1,4,4-tetramethyltetrazene, formaldehyde, acetaldehyde and furaldehyde N,N-dimethylhydrazones, 1-formyl-2,2-dimethylhydrazine, N,N-dimethylformamide, N-nitrosodimethylamine, and 1-methyl-1H-1,2,4-triazole) in the peat bog soil of the fall site in subarctic region. One hundred samples of peat bog soil and one sample of surface water were analyzed by the developed earlier methodology.
View Article and Find Full Text PDFAs a renewable source of unique aromatic compounds, lignin attracts the attention of many researchers. However, for its successful application, it is necessary to have a clear and accurate idea of its chemical structure. Therefore, it is necessary to expand knowledge about the structure of lignins of various nature using the informative analytical methods.
View Article and Find Full Text PDFExisting methods for cleanup of wastewaters and soils polluted with the extremely toxic rocket fuel unsymmetrical dimethylhydrazine (UDMH) are mainly based on the treatment with various oxidative reagents. Until now, the assessment of their effectiveness was based on the residual content of UDMH and did not take into account the possibility of the formation of a large number of potentially dangerous nitrogen-containing transformation products (TPs). In this study, using the recently developed approach based on high-resolution Orbitrap mass spectrometry, the comprehensive characterization of UDMH TPs formed by the action of air oxygen and different oxidants (Fenton's reagent, KMnO, HOCl, HO in the presence of Cu and [Fe (EDTA)] catalysts) typically used to detoxify spill sites was performed.
View Article and Find Full Text PDF