Circadian rhythms in many brain regions and peripheral organs can be entrained by daily feeding schedules. The set of feeding-related signals that entrain peripheral clocks are tissue specific and include nutrients, metabolic hormones and temperature. Signals that entrain neural circadian clocks to mealtime have yet to be established for any brain region.
View Article and Find Full Text PDFRats readily learn to anticipate a reward signaled by an external stimulus. Anticipatory behaviors evoked by conditioned stimuli include 50 kHz ultrasonic vocalizations (USVs), a proposed behavioral correlate of positive affect and activation of midbrain dopamine pathways. Rats can also anticipate a reward, such as food, provided once daily, without external cueing.
View Article and Find Full Text PDFCircadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals.
View Article and Find Full Text PDFRestricted daily feeding schedules entrain circadian oscillators that generate food anticipatory activity (FAA) rhythms in nocturnal rodents. The location of food-entrainable oscillators (FEOs) necessary for FAA remains uncertain. The most common procedure for inducing circadian FAA is to limit food access to a few hours in the middle of the light period, when activity levels are normally low.
View Article and Find Full Text PDFDaily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats.
View Article and Find Full Text PDF