Publications by authors named "Ilya Okun"

Discovery of 5-HT6 receptor subtype and its exclusive localization within the central nervous system led to extensive investigations of its role in Alzheimer's disease, schizophrenia, and obesity. In the present study, we present preclinical evaluation of a novel highly-potent and highly-selective 5-HT6R antagonist, AVN-492. The affinity of AVN-492 to bind to 5-HT6R (Ki = 91 pM) was more than three orders of magnitude higher than that to bind to the only other target, 5-HT2BR, (Ki = 170 nM).

View Article and Find Full Text PDF

Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a K of 26 nM.

View Article and Find Full Text PDF

Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders.

View Article and Find Full Text PDF

Substituted diphenyl sulfones (10a-n) were synthesised, and the structures were confirmed by NMR, LC-MS and X-ray crystallography. Their antagonistic activities towards 5-HT₆ receptor were assessed in a cell-based functional assay. Diphenyl sulfone 10a, in spite of being the smallest and simplest known sulfonyl-containing 5-HT₆R antagonist, showed a strong potency (Ki=1.

View Article and Find Full Text PDF

Plasmodium falciparum is the infective agent responsible for malaria tropica. The glycogen synthase kinase-3 of the parasite (PfGSK-3) was suggested as a potential biological target for novel antimalarial drugs. Starting from hit structures identified in a high-throughput screening campaign, 3,6-diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles were discovered as a new class of PfGSK-3 inhibitors.

View Article and Find Full Text PDF

Synthesis and biological evaluation of a new series of structurally unrestricted and intramolecular hydrogen bond restricted derivatives of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines (angular tricyclics) and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidines (linear tricyclics) are described. Structurally restricted derivatives are highly potent and selective blockers of 5-HT(6) receptors with little difference between angular or linear shape of the tricyclic core, the angular species being only slightly more potent. The angular representative of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines, 5, can be considered as more favorable candidate for further development as it shows only weak 5-HT(2B) blocking activity (IC(50)=6.

View Article and Find Full Text PDF

Syntheses, biological evaluation as 5-HT(6) receptor (5-HT(6)R) antagonists, and structure-activity relationships for a series of novel 5,7-disubstituted (3-arylsulfonyl-pyrazolo[1,5-a]pyrimidins are disclosed. The molecule conformational flexibility in the series is restricted by formation of the intramolecular hydrogen bond between 3-sulfo and 2-methylamino groups, which renders high potency and high selectivity to block serotonin-induced responses in HEK-293 cells stably expressing human 5-HT(6)R. In this work, we tested the hypothesis if addition of a positively ionizable group (PI) to the pyrimidine ring of the scaffold members in positions 5, 6, or 7 could further increase their 5HT(6)R blocking potency.

View Article and Find Full Text PDF

Background: Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials.

Principal Findings: Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide).

View Article and Find Full Text PDF

Syntheses, biological evaluation, and structure-activity relationships for a series of novel 2-substituted 3-benzenesulfonyl-5,6-dimethyl-pyrazolo[1,5-a]pyrimidines are disclosed. In spite of a wide, four orders of magnitude, SAR range (K(i) varied from 260 pM to 2.96 μM), no significant correlation of 5-HT(6)R antagonistic potency was observed with major physiochemical characteristics, such as molecular weight, surface polar area, cLogP, or number of rotatable bonds.

View Article and Find Full Text PDF

Syntheses of a series of novel 3-sulfonyl-pyrazolo[1,5-a]pyrimidines and their 5-HT(6) receptor antagonistic structure-activity relationship are disclosed. The nature and position of substituents, which affect their receptor antagonistic activity, are analyzed. Among all synthesized derivatives, {3-(3-chlorophenylsulfonyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-2-yl}-methyl-amine 33 (K(i)=190 pM), (3-phenylsulfonyl-7-methyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 44 (K(i)=240 pM), (3-phenylsulfonyl-5-metoxymethyl-7-methyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 50 (K(i)=270 pM), and (3-phenylsulfonyl-5-methyl-7-metoxymethyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 52 (K(i)=280 pM) are the most potent antagonists of the 5-HT(6) receptors.

View Article and Find Full Text PDF

5-HT(6) receptors are exclusively localized in the CNS and have high affinity with many psychotropic agents. Though the role of this receptor in many CNS diseases is widely anticipated, lack of definite progress in the development of 5-HT(6) receptor-oriented drugs indicates a need for further discoveries of novel chemotypes with high potency and high selectivity to the receptor. Here we present preparations and biological evaluation of a series of (3-phenylsulfonylcycloalkano[e and d]pyrazolo[1,5-a]pyrimidin-2-yl)amines.

View Article and Find Full Text PDF

A number of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines were prepared and their 5-HT6 receptor binding affinity and ability to inhibit the functional cellular responses to serotonin were evaluated. 3-[(3-chlorophenyl)sulfonyl]-N-(tetrahydrofuran-2-ylmethyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{5,26} appeared to be the most active in a functional assay (IC50=29.0 nM) and 3-(phenylsulfonyl)-N-(2-thienylmethyl) thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{1,28} demonstrated the greatest affinity in a 5-HT6 receptor radioligand binding assay (Ki=1.

View Article and Find Full Text PDF

Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism with multiple isozymes often expressed in different eukaryotic cellular compartments. ACC-made malonyl-CoA serves as a precursor for fatty acids; it also regulates fatty acid oxidation and feeding behavior in animals. ACC provides an important target for new drugs to treat human diseases.

View Article and Find Full Text PDF

Here we present the solution phase parallel synthesis of a combinatorial library consisting of 776 new substituted 3-phenylsulfonyl-[1,2,3]triazolo[1,5-a]quinazolines and a study of the relation of their structure with a 5-HT(6) receptor antagonistic activity in a functional cell (HEK 293) analysis and radioligand competitive binding. We have found highly active and selective 5-HT(6)R antagonists. The most active 5-HT(6)R antagonists have IC(50) <100 nM in a functional assay, and K(i) <10 nM in a binding assay, which is 100 times higher than the activity with respect to other serotonin receptors.

View Article and Find Full Text PDF

Synthesis and biological evaluation of 1 ('angular') and 2 ('linear') cycloalkane-annelated 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidines as novel ligands of the 5-HT(6) receptors are disclosed. The new compounds 1 and 2 are highly selective antagonists of the receptor with sub-nanomolar affinities (K(i)<1 nM). In its structure, this new chemotype lacks a basic ionizable side chain, which is considered as the characteristic feature of the 5-HT(6) receptor antagonists pharmacophore model.

View Article and Find Full Text PDF

Syntheses, biological evaluation, and structure-activity relationships for a series of novel 5-styryl and 5-phenethyl analogs of dimebolin are disclosed. The novel derivatives and dimebolin share a broad spectrum of activities against therapeutically relevant targets. Among all synthesized derivatives, 2,8-dimethyl-5-[(Z)-2-phenylvinyl]-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole and its 5-phenethyl analog are the most potent blockers of 5-HT(7), 5-HT(6), 5-HT(2C), Adrenergic alpha(2) and H(1) receptors.

View Article and Find Full Text PDF

A series of novel 8-sulfonyl-substituted 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles (THPI) has been synthesized and their ability to interact with 5-HT(6) receptors evaluated in cell-based and radioligand binding assays. Amongst evaluated THPIs, compounds 9.HCl and 20.

View Article and Find Full Text PDF

Synthesis, biological evaluation and structure-activity relationships for a series of novel gamma-carboline analogues of Dimebon are described. Among the studied compounds, gamma-carbolines 3{8} and 3{14} have been identified as potent small molecule antagonists of histamine H(1) (IC(50)=0.1 microM) and serotonin 5-HT(6) (IC(50)=0.

View Article and Find Full Text PDF

Synthesis, biological evaluation, and SAR dependencies for a series of novel aryl and heteroaryl substituted N-[3-(4-phenylpiperazin-1-yl)propyl]-1,2,4-oxadiazole-5-carboxamide inhibitors of GSK-3beta kinase are described. The inhibitory activity of the synthesized compounds is highly dependent on the character of substituents in the phenyl ring and the nature of terminal heterocyclic fragment of the core molecular scaffold. The most potent compounds from this series contain 3,4-di-methyl or 2-methoxy substituents within the phenyl ring and 3-pyridine fragment connected to the 1,2,4-oxadiazole heterocycle.

View Article and Find Full Text PDF

Proteolytic caspase enzymes play a central role in cell apoptosis, or programmed cell death, often as integrating elements of different stimuli leading to the cell death. Since blockade of apoptotic pathways are fundamental for cell survival and proliferation, particularly in cancer cells, the activation of caspases is an attractive target for anticancer therapy. This review describes some of the druggable therapeutic targets thus far identified within the core apoptotic machinery, the corresponding drugs that have been developed, their effects on caspase-dependent apoptotic pathways and their potential impact on the therapy of cancer.

View Article and Find Full Text PDF

When studying cysteinyl proteases in general and caspases in particular, it is generally accepted that a reaction buffer must contain a reducing agent to prevent essential cysteinyl groups from spontaneous oxidation. Dithiothreitol (DTT) and beta-mercaptoethanol (beta-MCE) are 2 of the most broadly used reducing agents. While screening a library of small molecules against caspase-3, the authors have found that the nature of the reducing agent used, DTT or beta-MCE, dramatically affects screening results and leads to identification of nonoverlapping hits.

View Article and Find Full Text PDF

From the authors' 650,000 compound collection, they have selected approximately 15,000 potential small-molecule protease inhibitors, which were subjected to high-throughput screening against caspase-3. The screening yielded a series of hits that belong to 11 different scaffolds. Based on the structure of one of the hits, a new class of the small-molecule inhibitors with a double electrophilic warhead, 8-sulfonyl-pyrrolo[3,4-c]quinoline-1,3-diones (SPQ), was synthesized and tested in follow-up mechanistic and anti-apoptosis assays.

View Article and Find Full Text PDF

Primary high-throughput screening of commercially available small molecules collections often results in hit compounds with unfavorable ADME/Tox properties and low IP potential. These issues are addressed empirically at follow-up lead development and optimization stages. In this work, we describe a rational approach to the optimization of hit compounds discovered during screening of a kinase focused library against abl tyrosine kinase.

View Article and Find Full Text PDF

A convenient synthesis of novel 8-sulfonyl-1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines is described. As key steps to assemble the target molecular scaffold, our method features (a) Pfitzinger reaction of isatin-5-sulfonate 1 with methyl 3-oxo-3-phenylpropanoate, (b) formation of 1-(1H-pyrazol-4-yl)-1H-pyrrole-2,5-dione intermediate 5, and (c) reaction of sulfinic acid 9 with acrylate or methylacrylate leading to the corresponding sulfonyl propionates. Two compounds, ester 11 and morpholide 13, have been identified as potent inhibitors of caspase-3 with IC50 = 6 nM.

View Article and Find Full Text PDF

Synthesis, biological evaluation and structure-activity relationships for a series of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines are described. These compounds represent a new chemotype of nonpeptide small molecule inhibitors of caspase-3. Among the studied compounds, several potent inhibitors with IC50 in the range of 3-10 nM have been identified.

View Article and Find Full Text PDF