Equilibrium and kinetic behavior of adsorption-induced deformation have attracted a lot of attention in the last few decades. The theoretical and experimental works cover activated carbons, coals, zeolites, glasses, etc. However, most of the theoretical works describe only the equilibrium part of the deformation process or focus on the time evolution of the adsorption process.
View Article and Find Full Text PDFAdsorbed natural gas (ANG) is a promising solution for improving the safety and storage capacity of low-pressure gas storage systems. The structural-energetic and adsorption properties of active carbon ACPK, synthesized from cheap peat raw materials, are presented. Calculations of the methane-ethane mixture adsorption on ACPK were performed using the experimental adsorption isotherms of pure components.
View Article and Find Full Text PDFAdsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.
View Article and Find Full Text PDFAn activated carbon prepared from silicon carbide by thermochemical synthesis and designated as SiC-AC was studied as an adsorbent for xenon. The examination of textural properties of the SiC-AC adsorbent by nitrogen vapor adsorption measurements at 77 K, powder X-ray diffraction, and scanning electron microscopy revealed a relatively homogeneous microporous structure, a low content of heteroatoms, and an absence of evident transport macropores. The study of xenon adsorption and adsorption-induced deformation of the Si-AC adsorbent over the temperature range of 178 to 393 K and pressures up to 6 MPa disclosed the contraction of the material up to -0.
View Article and Find Full Text PDFThe present work focused on the experimental study of the performance of a scaled system of adsorbed natural gas (ANG) storage and transportation based on carbon adsorbents. For this purpose, three different samples of activated carbons (AC) were prepared by varying the size of coconut shell char granules and steam activation conditions. The parameters of their porous structure, morphology, and chemical composition were determined from the nitrogen adsorption at 77 K, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and scanning electron microscopy (SEM) measurements.
View Article and Find Full Text PDFTwo activated carbons (ACs) were prepared from peat using thermochemical KSO activation at 1053-1133 K for 1h, and steam activation at 1173K for 30 (AC-4) and 45 (AC-6) min. The steam activation duration affected the microporous structure and chemical composition of ACs, which are crucial for their adsorption performance in the methane storage technique. AC-6 displays a higher micropore volume (0.
View Article and Find Full Text PDF