The discovery of superconductivity in infinite-layer nickelates has added a new family of materials to the fascinating growing class of unconventional superconductors. By incorporating the strongly correlated multiorbital nature of the low-energy electronic degrees of freedom, we compute the leading superconducting instability from magnetic fluctuations relevant for infinite-layer nickelates. Specifically, by properly including the doping dependence of the Ni d_{x^{2}-y^{2}} and d_{z^{2}} orbitals as well as the self-doping band, we uncover a transition from d-wave pairing symmetry to nodal s_{±} superconductivity, driven by strong fluctuations in the d_{z^{2}}-dominated orbital states.
View Article and Find Full Text PDFFaraday Discuss
September 2022
Recent advances in the field of THz spectroscopy allow for controlled experiments to measure signatures of collective excitations in the conventional s-wave superconductor in the fifth harmonic generation current (FHG). Here, we analyze this process theoretically within the Anderson pseudospin formalism and use a periodic multicycle pulse setup, where the driving electromagnetic field points in the direction of a lattice vector. We investigate the interplay of the Higgs mode contribution to the fifth harmonic generation current and compare it to other contributing mechanisms, such as charge density fluctuations (CDF).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed.
View Article and Find Full Text PDFModern high-resolution microscopes are commonly used to study specimens that have dense and aperiodic spatial structure. Extracting meaningful information from images obtained from such microscopes remains a formidable challenge. Fourier analysis is commonly used to analyze the structure of such images.
View Article and Find Full Text PDFWe investigate a hybrid heterostructure with magnetic skyrmions (Sk) inside a chiral ferromagnet interfaced by a thin superconducting film via an insulating barrier. The barrier prevents electronic transport between the superconductor and the chiral magnet, such that the coupling can occur only through the magnetic fields generated by these materials. We find that Pearl vortices (PV) are generated spontaneously in the superconductor within the skyrmion radius, while anti-Pearl vortices (PV[over ¯]) compensating the magnetic moment of the Pearl vortices are generated outside of the Sk radius, forming an energetically stable topological hybrid structure.
View Article and Find Full Text PDF