Publications by authors named "Ilya Likhachev"

A true native protein state is realized in a water solution where proteins exhibit their dynamic properties important for the functioning. This is way we have analyzed the dynamics of α-helices inside ribosomal protein L25 from in a water solution. The dynamics of only main chain Cα-atoms have been simulated along the five independent trajectories at a total time 200ns.

View Article and Find Full Text PDF

In this work, we further developed a new approach for modeling the processes of the self-assembly of complex molecular nanostructures using molecular dynamics methods; in particular, using a molecular dynamics manipulator. Previously, this approach was considered using the example of the self-assembly of a phenylalanine helical nanotube. Now, a new application of the algorithm has been developed for implementing a similar molecular dynamic self-assembly into helical structures of peptide nanotubes (PNTs) based on other peptide molecules-namely diphenylalanine (FF) molecules of different chirality L-FF and D-FF.

View Article and Find Full Text PDF

Hydroxyapatite (HAP) is the main mineral component of bones and teeth. Due to its biocompatibility, HAP is widely used in medicine as a filler that replaces parts of lost bone and as an implant coating that promotes new bone growth. The modeling and calculations of the structure and properties of HAP showed that various structural defects have a significant effect on the properties of the material.

View Article and Find Full Text PDF

SARS-CoV-2 is a rapidly evolving pathogen that has caused a global pandemic characterized by several consecutive waves. Based on epidemiological and NGS data, many different variants of SARS-CoV-2 were described and characterized since the original variant emerged in Wuhan in 2019. Notably, SARS-CoV-2 variants differ in transmissibility and pathogenicity in the human population, although the molecular basis for this difference is still debatable.

View Article and Find Full Text PDF

There is still no answer to the mechanism of penetration of AMP peptides through the membrane bilayer. Several mechanisms for such a process have been proposed. It is necessary to understand whether it is possible, using the molecular dynamics method, to determine the ability of peptides of different compositions and lengths to pass through a membrane bilayer.

View Article and Find Full Text PDF

In this paper, we propose and use a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure using external force actions. A molecular dynamics manipulator (MD manipulator) is a controlled MDS type. As an example, the applicability of the developed algorithm for assembling peptide nanotubes (PNT) from linear phenylalanine (F or Phe) chains of different chirality is presented.

View Article and Find Full Text PDF

In this study we consider the features of spatial-structure formation in proteins and their application in bioengineering. Methods for the quantitative assessment of the chirality of regular helical and irregular structures of proteins are presented. The features of self-assembly of phenylalanine (F) into peptide nanotubes (PNT), which form helices of different chirality, are also analyzed.

View Article and Find Full Text PDF

The aim of this study was to evaluate the favorability of different conformations of aromatic residues in proteins by analysing the occurrence of particular conformations. The clustering of protein structures from the Protein Data Bank (PDB) was performed. Conformations of interacting aromatic residues were analyzed for 511 282 pairs in 35 493 protein structures sharing less than 50% identity.

View Article and Find Full Text PDF

Protein tyrosine phosphatases constitute a family of cytosolic and receptor-like signal transducing enzymes that catalyze the hydrolysis of phospho-tyrosine residues of phosphorylated proteins. PTP1B, encoded by , is a key negative regulator of insulin and leptin receptor signaling, linking it to two widespread diseases: type 2 diabetes mellitus and obesity. Here, we present crystal structures of the PTP1B apo-enzyme and a complex with a newly identified allosteric inhibitor, 2-(2,5-dimethyl-pyrrol-1-yl)-5-hydroxy-benzoic acid, designated as P00058.

View Article and Find Full Text PDF

We created a new library of disordered patterns and disordered residues in the Protein Data Bank (PDB). To obtain such datasets, we clustered the PDB and obtained the groups of chains with different identities and marked disordered residues. We elaborated a new procedure for finding disordered patterns and created a new version of the library.

View Article and Find Full Text PDF

Spectrins belong to repetitive three-helix bundle proteins that have vital functions in multicellular organisms and are of potential value in nanotechnology. To reveal the unique physical features of repeat proteins we have studied the structural and mechanical properties of three repeats of chicken brain α-spectrin (R15, R16 and R17) at the atomic level under stretching at constant velocities (0.01, 0.

View Article and Find Full Text PDF

This article is the first to study the mechanical properties of the immunoglobulin-binding domain of protein L (referred to as protein L) and its mutants at the atomic level. In the structure of protein L, each amino acid residue (except for alanines and glycines) was replaced sequentially by alanine. Thus, 49 mutants of protein L were obtained.

View Article and Find Full Text PDF

Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.

View Article and Find Full Text PDF