Publications by authors named "Ilya L Borisov"

This paper presents the results of studies on the pervaporation properties (for benzene/hexane mixtures) and gas permeability (for He, H, N, O, CO, CH, CH, and CH) of ladder-like polyphenylsesquioxanes (L-PPSQ) with improved physical and chemical properties. These polymers were obtained by condensation of -tetraphenylcyclotetrasiloxanetetraol in ammonia medium. The structure of L-PPSQ was fully confirmed by a combination of physicochemical analysis methods: H, Si NMR, IR spectroscopy, HPLC, powder XRD, and viscometry in solution.

View Article and Find Full Text PDF

The first commercial hollow fiber and flat sheet gas separation membranes were produced in the late 1970s from the glassy polymers polysulfone and poly(vinyltrimethyl silane), respectively, and the first industrial application was hydrogen recovery from ammonia purge gas in the ammonia synthesis loop. Membranes based on glassy polymers (polysulfone, cellulose acetate, polyimides, substituted polycarbonate, and poly(phenylene oxide)) are currently used in various industrial processes, such as hydrogen purification, nitrogen production, and natural gas treatment. However, the glassy polymers are in a non-equilibrium state; therefore, these polymers undergo a process of physical aging, which is accompanied by the spontaneous reduction of free volume and gas permeability over time.

View Article and Find Full Text PDF

The thermal-oxidative degradation of aqueous solutions of carbonized monoethanolamine (MEA, 30% wt., 0.25 mol MEA/mol CO) was studied for 336 h at 120 °C.

View Article and Find Full Text PDF

Membrane development for specific separation tasks is a current and important topic. In this work, the influence of OH-groups introduced in polydecylmethylsiloxane (PDecMS) was shown on the separation of CO from air and aldehydes from hydroformylation reaction media. OH-groups were introduced to PDecMS during hydrosilylation reaction by adding 1-decene with undecenol-1 to polymethylhydrosiloxane, and further cross-linking.

View Article and Find Full Text PDF

This work was focused on the mitigation of physical aging in thin-film composite (TFC) membranes (selective layer ~1 μm) based on polymer intrinsic microporosity (PTMSP) by the introduction of both soft, branched polyethyleneimine (PEI), and rigid, porous aromatic framework PAF-11, polymer additives. Self-standing mixed-matrix membranes of thicknesses in the range of 20-30 μm were also prepared with the same polymer and fillers. Based on 450 days of monitoring, it was observed that the neat PTMSP composite membrane underwent a severe decline of its gas transport properties, and the resultant CO permeance was 14% (5.

View Article and Find Full Text PDF

Poly-(4,4'-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem.

View Article and Find Full Text PDF

Polymeric coatings and membranes with extended stability toward a wide range of organic solvents are practical for application in harsh environments; on the other hand, such stability makes their processing quite difficult. In this work, we propose a novel method for the fabrication of films based on non-soluble polymers. The film is made from the solution of block copolymer containing both soluble and insoluble blocks followed by selective decomposition of soluble blocks.

View Article and Find Full Text PDF
Article Synopsis
  • - Polymers made from norbornenes are important for various high-tech applications like low dielectric materials and OLEDs, but their properties, especially regarding gas transport and dielectric behavior, are not well understood.
  • - A new polymer was successfully synthesized using a specific monomer derived from -5-norbornenecarboxylic acid and 1,1'-bi-2-naphthol, resulting in high yields and significant molecular weight after being polymerized with a Grubbs catalyst.
  • - The resulting polymer, polyNBi, is amorphous and exhibits lower permeability and dielectric permittivity compared to another polymer, polyNB, indicating the potential for tailor-made polynorbornenes for specific
View Article and Find Full Text PDF

This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.

View Article and Find Full Text PDF

Polynorbornenes represent a fruitful class of polymers for structure-property study. Recently, vinyl-addition polynorbornenes bearing side groups of different natures were observed to exhibit excellent gas permeation ability, along with attractive CH/CH and CO/N separation selectivities. However, to date, the gas transport properties of fluorinated addition polynorbornenes have not been reported.

View Article and Find Full Text PDF

The present work evaluates the transport properties of thermoplastic R-BAPB polyimide based on 1,3-bis(3,3',4,4'-dicarboxyphenoxy)benzene (dianhydride R) and 4,4'-bis(4-aminophenoxy)biphenyl (diamine BAPB). Both experimental studies and molecular dynamics simulations were applied to estimate the diffusion coefficients and solubilities of various gases, such as helium (He), oxygen (O), nitrogen (N), and methane (CH). The validity of the results obtained was confirmed by studying the correlation of the experimental solubilities and diffusion coefficients of He, O, and N in R-BAPB, with their critical temperatures and the effective sizes of the gas molecules, respectively.

View Article and Find Full Text PDF

Nanoporous glassy polymers are perspective materials for the fabrication of gas separation membranes, especially for the application of gaseous hydrocarbon separation. However, the drawback of such materials is the pronounced physical aging resulting in the dramatic drop of gas transport properties due to relaxation of high-free-volume fraction in time. Herein, a novel and readily available group of such glassy polymers is reported based on 5-alkylnorbornenes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionopgf836sb6bkl9jktlnjfv7ca0ndk79q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once