Publications by authors named "Ilya Kurochkin"

Objectives: The COVID-19 pandemic has exposed a number of key challenges that need to be urgently addressed. Mass spectrometric studies of blood plasma proteomics provide a deep understanding of the relationship between the severe course of infection and activation of specific pathophysiological pathways. Analysis of plasma proteins in whole blood may also be relevant for the pandemic as it requires minimal sample preparation.

View Article and Find Full Text PDF

The development of various enzyme-linked immunosorbent assays (ELISAs) coupled with surface-enhanced Raman scattering (SERS) detection is a growing area in analytical chemistry due to their potentially high sensitivity. A SERS-based ELISA with horseradish peroxidase (HRP) as an enzymatic label, an -phenylenediamine (oPD) substrate, and a 2,3-diaminophenazine (DAP) enzymatic product was one of the first examples of such a system. However, the full capabilities of this long-known approach have yet to be revealed.

View Article and Find Full Text PDF

A stimuli-responsive (pH- and thermoresponsive) micelle-forming diblock copolymer, poly(1,2-butadiene)--poly(,-dimethylaminoethyl methacrylate) (PB--PDMAEMA), was used as a polymer template for the in situ synthesis of silver nanoparticles (AgNPs) through Ag complexation with PDMAEMA blocks, followed by the reduction of the bound Ag with sodium borohydride. A successful synthesis of the AgNPs on a PB--PDMAEMA micellar template was confirmed by means of UV-Vis spectroscopy and transmission electron microscopy, wherein the shape and size of the AgNPs were determined. A phase transition of the polymer matrix in the AgNPs/PB--PDMAEMA metallopolymer hybrids, which results from a collapse and aggregation of PDMAEMA blocks, was manifested by changes in the transmittance of their aqueous solutions as a function of temperature.

View Article and Find Full Text PDF

Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment.

View Article and Find Full Text PDF

C-reactive protein, cystatin C, myoglobin, and D-dimer represent the inflammatory or thromboembolic status of the patient and play important roles in early diagnostics of acute myocardial infarction. Each protein can indicate some health problems, but their simultaneous detection can be crucial for differential diagnostics. The express analysis of these proteins in a small drop of plasma was developed using magnetic beads.

View Article and Find Full Text PDF

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E.

View Article and Find Full Text PDF

Macroporous poly(vinyl alcohol) cryogels (PVACGs) are physical gels formed via cryogenic processing of polymer solutions. The properties of PVACGs depend on many factors: the characteristics and concentration of PVA, the absence or presence of foreign solutes, and the freezing-thawing conditions. These factors also affect the macroporous morphology of PVACGs, their total porosity, pore size and size distribution, etc.

View Article and Find Full Text PDF

The surface-enhanced Raman spectroscopy (SERS) signal of a reporter on silver nanoparticles can be effectively gained by gradient electric field application. The external electric field initiates the dielectrophoresis of nanoparticles and their electrically induced dipole-dipole interaction. Owing to dielectrophoresis, the nanoparticles are concentrated in the area of high electrical field strength.

View Article and Find Full Text PDF

The coupling of alternative splicing with the nonsense-mediated decay (NMD) pathway maintains quality control of the transcriptome in eukaryotes by eliminating transcripts with premature termination codons (PTC) and fine-tunes gene expression. Long noncoding RNA (lncRNA) can regulate multiple cellular processes, including alternative splicing. Previously, murine Morrbid (myeloid RNA repressor of Bcl2l11 induced death) lncRNA was described as a locus-specific controller of the lifespan of short-living myeloid cells via transcription regulation of the apoptosis-related Bcl2l11 protein.

View Article and Find Full Text PDF

is an extremely infectious and malignant pathogen among many bacteria species. The aim of this work is to provide a robust classification model that would be able to identify independent of the culture growth stage and the variations in bacteria concentration in suspension and also one that would be able to identify the pathogen among both taxonomically close species of the same genus and taxonomically distant species of different genera, using Fourier transform infrared spectroscopy (FTIR). In total, the spectra of 141 isolates of 17 bacteria have been used.

View Article and Find Full Text PDF

Original multiscale flaked silver SERS-substrate (MFSS substrate) was applied for glycated albumin (GA) biosensing. The substrate is composed from silver flakes that have three orders of magnitude size dispersion: from 50 nm to 2 μm. The multiscale silver structure refracts the incident light and various surface plasmons are excited.

View Article and Find Full Text PDF

We highlight microgel/enzyme thin films that were deposited onto solid interfaces via two sequential steps, the adsorption of temperature- and pH-sensitive microgels, followed by their complexation with the enzyme choline oxidase, ChO. Two kinds of functional (ionic) microgels were compared in this work in regard to their adsorptive behavior and interaction with ChO, that is, poly(-isopropylacrylamide---(3-aminopropyl)methacrylamide), P(NIPAM--APMA), bearing primary amino groups, and poly(-isopropylacrylamide---[3-(dimethylamino) propyl]methacrylamide), P(NIPAM--DMAPMA), bearing tertiary amino groups. The stimuli-sensitive properties of the microgels in the solution were characterized by potentiometric titration, dynamic light scattering (DLS), and laser microelectrophoresis.

View Article and Find Full Text PDF

Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances.

View Article and Find Full Text PDF

A versatile guest matrix was fabricated from a temperature- and pH-sensitive poly(N-isopropylacrylamide)-co-(3-(N,N-dimethylamino)propylmethacrylamide) microgel (poly(NIPAM-co-DMAPMA), MG) for the gentle incorporation of butyrylcholinesterase (BChE). The microgel/BChE films were built up on a surface of graphite-based screen-printed electrodes (SPEs) premodified with MnO nanoparticles via a two-step sequential adsorption under careful temperature and pH control. On this basis, a rather simple amperometric biosensor construct was formed, which uses butyrylthiocholine as BChE substrate with subsequent MnO-mediated thiocholine oxidation at a graphite-based SPE.

View Article and Find Full Text PDF

New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances.

View Article and Find Full Text PDF

The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound-induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. We carried out the present work to further develop the mouse model by testing the hypothesis that whole blood NTE inhibition could be used as a biochemical marker for exposure to neuropathic OP compounds.

View Article and Find Full Text PDF

This work examines the adsorption regime and the properties of microgel/enzyme thin films deposited onto conductive graphite-based substrates. The films were formed via two-step sequential adsorption. A temperature- and pH-sensitive poly(N-isopropylacrylamide)-co-(3-(N,N-dimethylamino)propylmethacrylamide) microgel (poly(NIPAM-co-DMAPMA microgel) was adsorbed first, followed by its interaction with the enzymes, choline oxidase (ChO), butyrylcholinesterase (BChE), or mixtures thereof.

View Article and Find Full Text PDF

This work examines the fabrication regime and the properties of microgel and microgel/enzyme thin films adsorbed onto conductive substrates (graphite or gold). The films were formed via two sequential steps: the adsorption of a temperature- and pH-sensitive microgel synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAM) and 3-(N,N-dimethylamino)propylmethacrylamide (DMAPMA) (poly(NIPAM-co-DMAPMA) at the pH-condition corresponding to its noncharged state (first step of adsorption), followed by the enzyme, tyrosinase, adsorption at the pH-condition when the microgel and the enzyme are oppositely charged (second step of adsorption). The stimuli-sensitive properties of poly(NIPAM-co-DMAPMA) microgel were characterized by potentiometric titration and dynamic light scattering (DLS) in solution as well as by atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) at solid interface.

View Article and Find Full Text PDF

This work examines the fabrication regime and the properties of polymer-enzyme thin-films adsorbed onto conductive substrates (graphite or gold). The films are formed via two-steps, sequential adsorption of poly(n-butylmethacrylate)-block-poly(N,N-dimethylaminoethyl methacrylate) (PnBMA-b-PDMAEMA) diblock copolymer micelles (1st step of adsorption), followed by the enzyme choline oxidase (ChO) (2nd step of adsorption). The solution properties of both adsorbed components are studied and the pH-dependent step-by-step fabrication of polymer-enzyme biosensor coatings reveals rather drastic differences in their enzymatic activities in dependence on the pH of both adsorption steps.

View Article and Find Full Text PDF

Intertidal bivalves are commonly exposed to multiple stressors including periodic hypoxia, temperature fluctuations and pollution, which can strongly affect energy metabolism. We used top-down control and elasticity analyses to determine the interactive effects of intermittent hypoxia, cadmium (Cd) exposure and acute temperature stress on mitochondria of the eastern oyster Crassostrea virginica. Oysters were acclimated at 20°C for 30 days in the absence or presence of 50 μg l(-1) Cd and then subjected to a long-term hypoxia (6 days at <0.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic metal and an important environmental pollutant that can strongly affect mitochondrial function and bioenergetics in animals. We investigated the mechanisms of Cd action on mitochondrial function of a marine mollusk (the eastern oyster Crassostrea virginica) by performing a top-down control analysis of the three major mitochondrial subsystems (substrate oxidation, proton leak, and phosphorylation). Our results showed that the substrate oxidation and proton leak subsystems are the main targets for Cd toxicity in oyster mitochondria.

View Article and Find Full Text PDF

This paper reviews our previously published data and presents new results on biosensor assay of blood esterases. Tyrosinase and choline oxidase biosensors based on nanostructured polyelectrolyte films were developed for these purposes. Experiments were performed on the quantitative determination of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CaE), and neuropathy target esterase (NTE) in samples of whole blood of rats, mice, and humans.

View Article and Find Full Text PDF

Organophosphates (OPs) that inhibit neuropathy target esterase (NTE) with subsequent ageing can produce OP-induced delayed neuropathy (OPIDN). NTE inhibition in lymphocytes can be used as a biomarker of exposure to neuropathic OPs. An electrochemical method was developed to assay NTE in whole blood.

View Article and Find Full Text PDF

We propose to form nanoelectrode arrays by deposition of the electrocatalyst through lyotropic liquid crystalline templates onto inert electrode support. Whereas Prussian Blue is known to be a superior electrocatalyst in hydrogen peroxide reduction, carbon materials used as electrode support demonstrate only a minor activity. We report on the possibility for nanostructuring of Prussian Blue by its electrochemical deposition through lyotropic liquid crystalline templates, which is noticed from atomic force microscopy images of the resulting surfaces.

View Article and Find Full Text PDF

Neuropathy target esterase (NTE) is the target protein for neuropathic organophosphorus (OP) compounds that produce OP compound-induced delayed neurotoxicity (OPIDN). Inhibition/aging of brain NTE within hours of exposure predicts the potential for development of OPIDN in susceptible animal models. Lymphocyte NTE has also found limited use as a biomarker of human exposure to neuropathic OP compounds.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6o7bpjudv350c66esgtkjfa03lmeu4io): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once