Publications by authors named "Ilya Konyshev"

This letter considers the possibility of using the optical trap to study the structure and function of the microbial flagellum. The structure of the flagellum of a typical gram-negative bacterium is described in brief. A standard mathematical model based on the principle of superposition is used to describe the movement of an ellipsoidal microbial cell in a liquid medium.

View Article and Find Full Text PDF

The study aims to determine how chitosan impacts pectin hydrogel's ability to attach peritoneal leukocytes, activate complement, induce hemolysis, and adsorb blood proteins. The hydrogels PEC-Chi0, PEC-Chi25, PEC-Chi50, and PEC-Chi75 were prepared by placing a mixture solution of 4% pectin and 4% chitosan in a ratio of 4:0, 3:1, 2:2, and 1:3 in a solution of 1.0 M CaCl.

View Article and Find Full Text PDF

The interactions of a microbial cell with host cells and humoral factors play an important role in the development of infectious diseases. The study of these mechanisms contributes to the development of effective methods for the treatment of bacterial infections. One of the possible approaches to studying bacterial adhesion to host cells is based on the use of the optical trap method.

View Article and Find Full Text PDF

The micromechanical methods, among which optical trapping and atomic force microscopy have a special place, are widespread currently in biology to study molecular interactions between different biological objects. Optical trapping is reported to be quite applicable to study the mechanical properties of surface structures onto bacterial (pili and flagella) and eukaryotic (filopodia) cells. The review briefly summarizes the physical basis of optical trapping, as well as the principles of calculating the van der Waals, electrostatic, and donor-acceptor forces when two microparticles or a microparticle and a flat surface are used.

View Article and Find Full Text PDF

Despite the relatively low incidence of plague, its etiological agent, , is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates.

View Article and Find Full Text PDF

Understanding of interactions between a bacterium and an immune or non-immune host organism at the cellular and subcellular level is important in order to improve new and existing immunobiological tools for the treatment of bacterial infections (including pseudotuberculosis). The aim of this work was to quantify the interaction force between Yersinia pseudotuberculosis and monoclonal antibodies (mAbs) in the model system "lipopolysaccharide (LPS) - mAbs" by atomic force microscopy (AFM). Our research findings provided the methodical approaches to force measurements between an AFM probe, which was functionalized with Y.

View Article and Find Full Text PDF

This article reports the force spectroscopy investigation of interactions between lipopolysaccharides (LPSs) of two species from Yersinia genus and complementary (or heterologous) monoclonal antibodies (mAbs). We have obtained the experimental data by optical trapping on the "sensitized polystyrene microsphere - sensitized glass substrate" model system at its approach - retraction in vertical plane. We detected non-specific interactions in low-amplitude areas on histograms mainly due to physicochemical properties of abiotic surface and specific interactions in complementary pairs "antigen - antibodies" in high-amplitude areas (100-120 pN) on histograms.

View Article and Find Full Text PDF