Publications by authors named "Ilya I Marochkin"

The accurate molecular structure of picolinic acid has been determined from experimental data and computed at the coupled cluster level of theory. Only one conformer with the O[double bond, length as m-dash]C-C-N and H-O-C[double bond, length as m-dash]O fragments in antiperiplanar (ap) positions, ap-ap, has been detected under conditions of the gas-phase electron diffraction (GED) experiment (Tnozzle = 375(3) K). The semiexperimental equilibrium structure, rsee, of this conformer has been derived from the GED data taking into account the anharmonic vibrational effects estimated from the ab initio force field.

View Article and Find Full Text PDF

1-Methylthymine is of particular interest because it can be considered as a simple model of thymidine, in which deoxyribose attaches to thymine precisely at the N1 atom. The structure of this molecule is still unknown and so far has been experimentally studied for the first time in this work. The semiexperimental equilibrium structural parameters (r(e)(se)/∠(e)(se)) of 1-methylthymine have been determined by the gas electron diffraction (GED) method, taking into account vibrational corrections calculated with the use of the anharmonic (cubic) MP2/cc-pVTZ force constants.

View Article and Find Full Text PDF

As far as fundamental knowledge is concerned, the methyl derivatives of uracil can be considered as the simplest objects for studying the structural effects due to the substitution in the pyrimidyne nucleobases. From this point of view, 1-methyluracil is of special importance in biochemistry because uracil attaches ribose in ribonucleic acid (RNA) just precisely at the N1 atom. The semi-experimental equilibrium structure (r(e)(se)) of 1-methyluracil has been determined for the first time by the gas electron diffraction (GED) method taking into account rovibrational corrections to the thermal-average internuclear distances calculated with harmonic and anharmonic (cubic) MP2/cc-pVTZ force constants with consideration of the methyl torsion as a large-amplitude motion.

View Article and Find Full Text PDF