Publications by authors named "Ilya Drozdov"

Borophene, a crystalline monolayer boron sheet, has been predicted to adopt a variety of structures-owing to its high polymorphism-that may possess physical properties that could serve in flexible electronics, energy storage and catalysis. Several borophene polymorphs have been synthesized on noble metal surfaces but for device fabrication larger single-crystal domains are typically needed with, ideally, weak borophene-substrate interactions. Here we report the synthesis of borophene on a square-lattice Cu(100) surface and show that incommensurate coordination reduces the borophene-substrate interactions and also leads to a borophene polymorph different from those previous reported.

View Article and Find Full Text PDF

We report a Spectroscopic Imaging Scanning Tunneling Microscopy (SI-STM) study of a DyBaCuO (DBCO) thin film (T ~ 79 K) synthesized by the molecular beam epitaxy (MBE). We observed an unusual transfer of spectral weight in the local density of states (LDOS) spectra occurring only within the superconducting gap. By a systematic control of the tip-sample distance and the junction resistance, we demonstrate that the spectral weight transfer can be switched at a nano-meter length scale.

View Article and Find Full Text PDF

Borophene, a theoretically proposed two-dimensional (2D) boron allotrope, has attracted much attention as a candidate material platform for high-speed, transparent and flexible electronics. It was recently synthesized, on Ag(111) substrates, and studied by tunnelling and electron spectroscopy. However, the exact crystal structure is still controversial, the nanometre-size single-crystal domains produced so far are too small for device fabrication and the structural tunability via substrate-dependent epitaxy is yet to be proven.

View Article and Find Full Text PDF
Article Synopsis
  • Topology now helps describe the electronic structure of crystalline solids, with a focus on surface states of bulk insulating three-dimensional topological crystals.
  • The study reveals that bismuth, usually seen as topologically trivial, actually has unique hinge states that are topologically protected and contribute to conducting modes instead of just surface states.
  • The findings are backed by theoretical analysis and experiments, including scanning-tunneling spectroscopy and Josephson interferometry, confirming bismuth's classification as a higher-order topological insulator.
View Article and Find Full Text PDF

Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states.

View Article and Find Full Text PDF

We studied 7 influenza (H5N1) viruses isolated from poultry in western Siberia and the European part of the Russian Federation during July 2005-February 2006. Full genome sequences showed high homology to Qinghai-like influenza (H5N1) viruses. Phylogenetic analysis not only showed a close genetic relationship between the H5N1 strains isolated from poultry and wild migratory waterfowls but also suggested genetic reassortment among the analyzed isolates.

View Article and Find Full Text PDF