Alcohol use disorder (AUD) is a widespread disease leading to the deterioration of cognitive and other functions. Mechanisms by which alcohol affects the brain are not fully elucidated. Splicing constitutes a nuclear process of RNA maturation, which results in the formation of the transcriptome.
View Article and Find Full Text PDFFor most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing.
View Article and Find Full Text PDFAlcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs).
View Article and Find Full Text PDFThe central dogma of molecular biology, which states that the only role of long RNA transcripts is to convey information from gene to protein, was brought into question in recent years due to discovery of the extensive presence and complex roles of long noncoding RNAs (lncRNAs). Furthermore, lncRNAs were found to be involved in pathogenesis of multiple diseases and thus represent a new class of therapeutic targets. Translational efforts in the lncRNA field have been augmented by progress in optimizing the chemistry and delivery platforms of lncRNA-targeting modalities, including oligonucleotide-based drugs and CRISPR-Cas9.
View Article and Find Full Text PDFGenome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS).
View Article and Find Full Text PDFReperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII).
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2015
Objective: We tested the hypothesis that endothelial peroxisome proliferator-activated receptor-γ protects against vascular thrombosis using a transgenic mouse model expressing a peroxisome proliferator-activated receptor-γ mutant (E-V290M) selectively in endothelium.
Approach And Results: The time to occlusive thrombosis of the carotid artery was significantly shortened in E-V290M mice compared with nontransgenic littermates after either chemical injury with ferric chloride (5.1 ± 0.
Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS) is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia.
View Article and Find Full Text PDFPurpose Of Review: Obesity has become a worldwide epidemic that is driving increased morbidity and mortality from thrombotic disorders such as myocardial infarction, stroke, and venous thromboembolism. Effective prevention and treatment of thrombosis in obese patients is limited by an incomplete understanding of the underlying prothrombotic mechanisms and by uncertainties about risks, benefits, and dosing of anticoagulant drugs in this patient population.
Recent Findings: This review summarizes our current understanding of established and emerging mechanisms contributing to the obesity-induced prothrombotic state.
A growing body of evidence suggests that the extracellular domain of the epithelial Na(+) channel (ENaC) functions as a sensor that fine tunes channel activity in response to changes in the extracellular environment. We previously found that acidic pH increases the activity of human ENaC, which results from a decrease in Na(+) self-inhibition. In the current work, we identified extracellular domain residues responsible for this regulation.
View Article and Find Full Text PDF