Publications by authors named "Ilya A Rodionov"

Reproducibility of Al/AlO/Al Josephson junctions is a challenge for scaling up superconducting quantum processors. The frequency uncertainty of the transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction microstructure and electrical properties. Here, we present a solution for this problem using the post-fabrication Josephson junction thermal annealing process.

View Article and Find Full Text PDF

Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originate from Josephson junctions wiring and can limit qubit relaxation time.

View Article and Find Full Text PDF

Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip.

View Article and Find Full Text PDF

Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. As such devices become more complex, the requirements for reproducibility of their electrical properties across a chip are being tightened. Critical current of the Josephson junction Ic is the essential electrical parameter in a chip.

View Article and Find Full Text PDF

Low-loss photonic integrated circuits (PICs) are the key elements in future quantum technologies, nonlinear photonics and neural networks. The low-loss photonic circuits technology targeting C-band application is well established across multi-project wafer (MPW) fabs, whereas near-infrared (NIR) PICs suitable for the state-of-the-art single-photon sources are still underdeveloped. Here, we report the labs-scale process optimization and optical characterization of low-loss tunable photonic integrated circuits for single-photon applications.

View Article and Find Full Text PDF

The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlO/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps.

View Article and Find Full Text PDF

Nanostructure based on a dielectric grating (AlO), gasochromic oxide (WO) and catalyst (Pd) is proposed as a hydrogen sensor working at the room temperature. In the fabricated structure, the Pd catalyst film was as thin as 1 nm that allowed a significant decrease in the optical absorption. A high-Q guided-mode resonance was observed in a transmission spectrum at normal incidence and was utilized for hydrogen detection.

View Article and Find Full Text PDF

The negatively charged boron vacancy (V) defect in hexagonal boron nitride (hBN) with optically addressable spin states has emerged due to its potential use in quantum sensing. Remarkably, V preserves its spin coherence when it is implanted at nanometer-scale distances from the hBN surface, potentially enabling ultrathin quantum sensors. However, its low quantum efficiency hinders its practical applications.

View Article and Find Full Text PDF

The Indium Tin Oxide (ITO) platform is one of the promising solutions for state-of-the-art integrated optical modulators towards low-loss silicon photonics applications. One of the key challenges on this way is to optimize ITO-based thin films stacks for electro-optic modulators with both high extinction ratio and low insertion loss. In this paper we demonstrate the e-beam evaporation technology of 20 nm-thick ITO films with low extinction coefficient of 0.

View Article and Find Full Text PDF

Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour.

View Article and Find Full Text PDF

Advanced microsystems widely used in integrated optoelectronic devices, energy harvesting components, and microfluidic lab-on-chips require high-aspect silicon microstructures with a precisely controlled profile. Such microstructures can be fabricated using the Bosch process, which is a key process for the mass production of micro-electro-mechanical systems (MEMS) devices. One can measure the etching profile at a cross-section to characterize the Bosch process quality by cleaving the substrate into two pieces.

View Article and Find Full Text PDF

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E.

View Article and Find Full Text PDF

In recent years, we have been witnessing the intensive development of optical gas sensors. Thin palladium and platinum films as well as tungsten trioxide films with palladium or platinum catalysts are widely used for hydrogen detection, and the optical constants of these materials are required for sensor development. We report the optical parameters retrieved from a set of ellipsometric and transmission spectra for electron-beam evaporated palladium, platinum, and tungsten trioxide films.

View Article and Find Full Text PDF

A broadband low-noise four-stage high-electron-mobility transistor amplifier was designed and characterized in a cryogen-free dilution refrigerator at the 3.8 K temperature stage. The obtained power dissipation of the amplifier is below 20 mW.

View Article and Find Full Text PDF

A facile method for the preparation of large, microporous, drug-loaded particles is presented. High shear bollus injections of silk with cross-linker and drug colloids into super-cooled hexane were utilized to trigger phase separation of silk droplets, followed by immediate freezing at -60°C. A subsequent -20°C freeze-thaw of the frozen droplets resulted in self-assembly (crystallization) of the silk.

View Article and Find Full Text PDF

There is a demand for ultra low-loss metal films with high-quality single crystals and perfect surface for nanophotonics and quantum information processing. Many researches are devoted to alternative materials, but silver is by far theoretically the most preferred low-loss material at optical and near-IR frequencies. Usually, epitaxial growth is used to deposit single-crystalline silver films, but they still suffer from unpredictable losses and well-known dewetting effect that strongly limits films quality.

View Article and Find Full Text PDF

Solid-state quantum emitters are in high demand for emerging technologies such as advanced sensing and quantum information processing. Generally, these emitters are not sufficiently bright for practical applications, and a promising solution consists in coupling them to plasmonic nanostructures. Plasmonic nanostructures support broadband modes, making it possible to speed up the fluorescence emission in room-temperature emitters by several orders of magnitude.

View Article and Find Full Text PDF

Freeze-thaw processing of bovine serum albumin (BSA) aqueous solutions, which contain also the additives of denaturants (urea in this case) and thiol-bearing reductants [cysteine (Cys) in this case] leads to the formation of wide-pore cryogels. The properties and porous morphology of these spongy gel matrices were demonstrated to depend on the initial concentration of all precursors and on the freezing/frozen storage temperature. The optimum conditions for preparing such BSA-based cryogels were found to be as follows: [BSA] = 3-5 g dL(-1), [urea] = 0.

View Article and Find Full Text PDF