Publications by authors named "Ilse Van de Voorde"

This study is based on the fatty acid and amino acid profiles of seven edible insect species: , , , , , and . The aim of the present study is to provide new data on the fatty acid distributions among lipid classes as well as the species-specific protein conversion factor (Kp) of a wide range of insects in order to further improve the nutritional characterisation of insects as food. Oleic acid was the predominant fatty acid in all insects except for , in which a significantly higher percentage of linoleic acid was found.

View Article and Find Full Text PDF

Hydrophobins (HFBs) are a group of highly functional, low molecular weight proteins with the ability to self-assemble at hydrophobic-hydrophilic interfaces. The surface active, cysteine-rich proteins are found in filamentous fungi such as Trichoderma reesei. In the present study multiple extraction solvents and conditions were screened for the mycelium bound hydrophobin HFBI and the effects on the total amount of extracted proteins, HFBI recovery and HFBI gushing activity were investigated to gain a more thorough scientific insight on the extraction efficiency and selectivity.

View Article and Find Full Text PDF

The effect of treatment of flax with strategic enzyme combinations on the ease of fiber extraction and the chemical fiber composition is reported in this study. To contribute to the increasing demand for bio-based and sustainable materials, it is of great importance to develop optimal enzyme formulations which can replace the yet poorly controlled traditional dew retting process. Regarding the chemical composition of the fiber, enzymatic treatments all resulted in similar improvements, with an enhanced cellulose content of 81 ± 1% after polygalacturonase + xylanase treatment (vs.

View Article and Find Full Text PDF

Enzymes are highly advantageous compared to dew retting to reach fibers of high and consistent quality. However, no unambiguous insights have been retained from the research, i.e.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation.

View Article and Find Full Text PDF