Screening of a pteridine-based compound library led to the identification of compounds exhibiting immunosuppressive as well as anti-inflammatory activity. Optimization afforded a series of 2-amino-4-N-piperazinyl-6-(3,4-dimethoxyphenyl)pteridine analogues. The most potent congeners in this series displayed low nM IC(50) values in the Mixed Lymphocyte Reaction (MLR) assay.
View Article and Find Full Text PDFBesides TNF, activated T cells play a central role in the pathogenesis of inflammatory bowel diseases such as Crohn's disease. New therapies are still awaited to cure these often debilitating diseases. Natural occurring pteridines such as tetrahydrobiopterin (BH4) and neopterin have been reported to have immune modulating activities.
View Article and Find Full Text PDFElevated production of tumor necrosis factor (TNF) plays a central role in the pathogenesis of many inflammatory diseases, such as rheumatoid arthritis and Crohn's disease. Naturally occurring pteridine analogs have been reported to have potent immunomodulatory activity, especially on TNF production. The aim of this study is to identify small molecule TNF inhibitiors derived from pteridine and to prove their in vivo efficacy in an inflammatory model.
View Article and Find Full Text PDFIntracellular Ca2+ release is involved in setting up Ca2+ signals in all eukaryotic cells. Here we report that an increase in free Ca2+ concentration triggered the release of up to 41 +/- 3% of the intracellular Ca2+ stores in permeabilized A7r5 (embryonic rat aorta) cells with an EC50 of 700 nm. This type of Ca2+-induced Ca2+ release (CICR) was neither mediated by inositol 1,4,5-trisphosphate receptors nor by ryanodine receptors, because it was not blocked by heparin, 2-aminoethoxydiphenyl borate, xestospongin C, ruthenium red, or ryanodine.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2002
Intracellular calcium release is a fundamental signaling mechanism in all eukaryotic cells. The ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP(3)R) are intracellular calcium release channels. Both channels can be regulated by calcium and calmodulin (CaM).
View Article and Find Full Text PDFKN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, concentration-dependently and reversibly inhibited inositol 1,4,5-trisphosphate receptor (IP(3)R)-mediated [Ca(2+)](i) signaling in mouse eggs and permeabilized A7r5 smooth muscle cells, two cell types predominantly expressing type-1 IP(3)R (IP(3)R-1). KN-92, an inactive analog, was ineffective. The inhibitory action of KN-93 on Ca(2+) signaling depended neither on effects on IP(3) metabolism nor on the filling grade of Ca(2+) stores, suggesting a direct action on the IP(3)R.
View Article and Find Full Text PDFCalmodulin (CaM) is a ubiquitous protein that plays a critical role in regulating cellular functions by altering the activity of a large number of proteins, including the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor (IP3R). CaM inhibits IP3 binding in both the presence and absence of Ca2+ and IP3-induced Ca2+ release in the presence of Ca2+. We have now mapped and characterized a Ca2+-independent CaM-binding site in the N-terminal part of the type 1 IP3R (IP3R1).
View Article and Find Full Text PDF