Background: Determinants of maternal-fetal cytomegalovirus (CMV) transmission and factors influencing the severity of congenital CMV (cCMV) infection are not well understood.
Methods: We conducted a descriptive, multicenter study in pregnant women ≥18 years old with primary CMV infection and their newborns to explore maternal immune responses to CMV and determine potential immunologic/virologic correlates of cCMV following primary infection during pregnancy. We developed alternative approaches looking into univariate/multivariate factors associated with cCMV, including a participant clustering/stratification approach and an interpretable predictive model-based approach using trained decision trees for risk prediction (post hoc analyses).
Background: Vaccination against respiratory syncytial virus (RSV) during pregnancy may protect infants from RSV disease. Efficacy and safety data on a candidate RSV prefusion F protein-based maternal vaccine (RSVPreF3-Mat) are needed.
Methods: We conducted a phase 3 trial involving pregnant women 18 to 49 years of age to assess the efficacy and safety of RSVPreF3-Mat.
Background: Respiratory syncytial virus (RSV) fusion protein stabilized in the prefusion conformation (RSVPreF3) was under investigation as a maternal vaccine.
Methods: This phase 2, randomized, placebo-controlled, single-dose, multicenter study enrolled healthy, nonpregnant women, randomized 1:1:1:1:1 to 5 parallel groups studying RSVPreF3 (60 or 120 µg) coadministered with diphtheria, tetanus, and acellular pertussis vaccine (dTpa) or placebo, and dTpa coadministered with placebo. Safety and humoral immune responses were assessed.
Developing a vaccine to prevent congenital cytomegalovirus (CMV) infection and newborn disability requires an understanding of infection incidence. In a prospective cohort study of 363 adolescent girls (NCT01691820), CMV serostatus, primary infection, and secondary infection were determined in blood and urine samples collected at enrollment and every 4 months for 3 years. Baseline CMV seroprevalence was 58%.
View Article and Find Full Text PDFBackground: Various case definitions of respiratory syncytial virus lower respiratory tract infection (RSV-LRTI) are currently proposed. We assessed the performance of 3 clinical case definitions against the World Health Organization definition recommended in 2015 (WHO 2015).
Methods: In this prospective cohort study conducted in 8 countries, 2401 children were followed up for 2 years from birth.
Background: Safe and effective respiratory syncytial virus (RSV) vaccines remain elusive. This was a phase I/II trial (NCT02927873) of ChAd155-RSV, an investigational chimpanzee adenovirus-RSV vaccine expressing 3 proteins (fusion, nucleoprotein, and M2-1), administered to 12-23-month-old RSV-seropositive children followed up for 2 years after vaccination.
Methods: Children were randomized to receive 2 doses of ChAd155-RSV or placebo (at a 1:1 ratio) (days 1 and 31).
Respiratory syncytial virus (RSV) infection causes a substantial lower-respiratory-tract disease burden in infants, constituting a global priority for vaccine development. We evaluated immunogenicity, safety and efficacy of a chimpanzee adenovirus (ChAd)-based vaccine candidate, ChAd155-RSV, in a bovine RSV (bRSV) challenge model. This model closely reproduces the pathogenesis/clinical manifestations of severe pediatric RSV disease.
View Article and Find Full Text PDFBackground: The true burden of lower respiratory tract infections (LRTIs) due to respiratory syncytial virus (RSV) remains unclear. This study aimed to provide more robust, multinational data on RSV-LRTI incidence and burden in the first 2 years of life.
Methods: This prospective, observational cohort study was conducted in Argentina, Bangladesh, Canada, Finland, Honduras, South Africa, Thailand, and United States.
Background: Respiratory syncytial virus (RSV) causes respiratory tract infections, which may require hospitalization especially in early infancy. Transplacental transfer of RSV antibodies could confer protection to infants in their first months of life.
Methods: In this first-in-human, placebo-controlled study, 502 healthy nonpregnant women were randomized 1:1:1:1 to receive a single dose of unadjuvanted vaccine containing 30/60/120 µg of RSV fusion (F) protein stabilized in the prefusion conformation (RSVPreF3) or placebo.
A recombinant respiratory syncytial virus (RSV) fusion glycoprotein candidate vaccine (RSV-PreF) manufactured in Chinese hamster ovary cells was developed for immunization of pregnant women, to protect newborns against RSV disease through trans-placental antibody transfer. Traces of a host-cell protein, hamster neogenin (haNEO1), were identified in purified RSV-PreF antigen material. Given the high amino-acid sequence homology between haNEO1 and human neogenin (huNEO1), there was a risk that potential vaccine-induced anti-neogenin immunity could affect huNEO1 function in mother or fetus.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) is a common cause of respiratory tract illness and hospitalization in neonates and infants. RSV vaccination during pregnancy may protect offspring in their first months of life.
Methods: This randomized, observer-blind, multicenter, phase 2 study evaluated the immunogenicity and safety of an RSV candidate vaccine in healthy nonpregnant women aged 18-45 years.
Background: Respiratory syncytial virus (RSV) causes bronchiolitis and pneumonia in neonates and infants. RSV vaccination during pregnancy could boost preexisting neutralizing antibody titers, providing passive protection to newborns.
Methods: Two observer-blinded, controlled studies (RSV F-020 [clinical trials registration NCT02360475] and RSV F-024 [NCT02753413]) evaluated immunogenicity and safety of an investigational RSV vaccine in healthy, nonpregnant 18-45-year-old women.
Pregnancy and the postpartum period are associated with elevated risks to both mother and infant from infectious disease. Vaccination of pregnant women, also called maternal immunization, has the potential to protect pregnant women, foetuses and infants from several vaccine-preventable diseases. Maternal immunoglobulin G antibodies are actively transferred through the placenta to provide passive immunity to new-borns during the first months of life, until the time for infant vaccinations or until the period of greatest susceptibility has passed.
View Article and Find Full Text PDFTo investigate long-term antibody persistence following the administration of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV), we present results of 2 follow-up studies assessing antibody persistence following 2 3+1 schedules up to 4 (NCT00624819 - Study A) and 5 years (NCT00891176 - Study B) post-booster vaccination. In Study A, antibody persistence was measured one, 2 and 4 years post-booster in children previously primed and boosted with PHiD-CV, or primed with the 7-valent pneumococcal conjugate vaccine (7vCRM) and boosted with either PHiD-CV or 7vCRM. In Study B, PHiD-CV was co-administered with meningococcal vaccines, and pneumococcal antibody persistence was measured 2, 3 and 5 years post-booster.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) is a leading cause of childhood bronchiolitis and pneumonia, particularly in early infancy. Immunization of pregnant women could boost preexisting immune responses, providing passive protection to newborns through placental transfer of anti-RSV antibody.
Methods: In this first-in-humans clinical trial of a purified recombinant RSV protein F vaccine engineered to preferentially maintain prefusion conformation (RSV-PreF), 128 healthy men 18-44 years old were randomized to one dose of a RSV-PreF vaccine containing 10, 30, or 60 µg of RSV-PreF antigen, with or without alum adjuvant, or control, and followed for one year for safety and immunogenicity outcomes.
In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6-35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.
View Article and Find Full Text PDFPediatr Infect Dis J
July 2015
Background: During the influenza pandemic 2009-2010, an AS03-adjuvanted A(H1N1)pdm09 vaccine was used extensively in children 6 months of age and older, and during the 2010-2011 influenza season, the A(H1N1)pdm09 strain was included in the seasonal trivalent inactivated influenza vaccine (TIV) without adjuvant. We evaluated the immunogenicity and safety of TIV in children previously vaccinated with the AS03-adjuvanted A(H1N1)pdm09 vaccine.
Methods: Healthy children were randomized (1:1) to receive TIV or a control vaccine.
We present an age-structured dynamic transmission model for cytomegalovirus (CMV) in the United States, based on natural history and available data, primarily aiming to combine the available qualitative and quantitative knowledge toward more complex modeling frameworks to better reflect the underlying biology and epidemiology of the CMV infection. The model structure explicitly accounts for primary infections, reactivations and re-infections. Duration of infectiousness and likelihood of reactivation were both assumed to be age-dependent, and natural reduction in the re-infection risk following primary infection was included.
View Article and Find Full Text PDFBackground: Induction of immunologic memory was assessed following primary vaccination with 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV).
Methods: Infants were randomized (1:1) to receive 3 doses of PHiD-CV or 7vCRM (7-valent CRM197-conjugated pneumococcal conjugate vaccine [PCV]) at 2, 3, and 4 months of age followed by 23-valent pneumococcal polysaccharide vaccine (23vPS) booster dose at 11 to 14 months of age. Pneumococcal geometric mean antibody concentrations (GMCs) and opsonophagocytic activity (OPA) geometric mean titers were measured.
Background: We evaluated catch-up vaccination schedules with 10-valent pneumococcal nontypeable Haemophilus influenzae Protein D Conjugate Vaccine (PHiD-CV).
Methods: In this open, controlled study, children stratified into 4 age groups (N = 150 each) were vaccinated with PHiD-CV: (a) <6 months reference group: 3 primary doses with booster at 12 to 15 months, (b) 7 to 11 months: 2 doses and booster at 12 to 15 months, (c) 12 to 23 months: 2 doses, and (d) 2 to 5 years: 1 dose. Serotype-specific pneumococcal responses were measured by 22F-inhibition enzyme-linked immunosorbent assay (ELISA) and opsonophagocytic activity (OPA) assay.