Publications by authors named "Ilse Daehn"

Glomerular endothelial cell (GEnC) injury is a common feature across the wide spectrum of glomerular diseases. We recently reported that the endothelial-specific knockout of increases the susceptibility to GEnC injury and subsequent development of subacute thrombotic microangiopathy (TMA). However, the mechanism(s) mediating GEnCs response to injury in TMA are poorly understood.

View Article and Find Full Text PDF

Jiang et al. show that zinc finger FYVE-type containing 21, a Rab5 effector in glomerular endothelial cells is involved in the maintenance of glomerular filtration barrier homeostasis through the stabilization of activated endothelial nitric oxide synthase on subcellular vesicles. The study demonstrates that zinc finger FYVE-type containing 21 could modulate the levels of caveolin-1 in glomerular endothelial cells using vesicle-based trafficking, thereby supporting endothelial nitric oxide synthase activity.

View Article and Find Full Text PDF

Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity.

View Article and Find Full Text PDF

The integrity of the barrier between blood and the selective filtrate of solutes is important for homeostasis and its disruption contributes to many diseases. Microphysiological systems that incorporate synthetic or natural membranes with human cells can mimic biological filtration barriers, such as the glomerular filtration barrier in the kidney, and they can readily be used to study cellular filtration processes as well as drug effects and interactions. We present an affordable, open-source platform for the real-time monitoring of functional filtration status in engineered microphysiological systems.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear.

View Article and Find Full Text PDF

The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age.

View Article and Find Full Text PDF

The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPβ, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs.

View Article and Find Full Text PDF

More than three-quarters of cases of chronic kidney disease are caused by glomerular diseases with glomerulosclerosis, including diabetic kidney disease, hypertensive nephropathy and glomerulonephritis. Studies in 2022 provided insights into the molecular mechanisms that maintain dynamic glomerular structures and the responses of specific glomerular cell types during glomerular disease.

View Article and Find Full Text PDF

Glomerular endothelial cell (GEC) dysfunction can initiate and contribute to glomerular filtration barrier breakdown. Increased mitochondrial oxidative stress has been suggested as a mechanism resulting in GEC dysfunction in the pathogenesis of some glomerular diseases. Historically the isolation of GECs from in vivo models has been notoriously challenging due to difficulties in isolating pure cultures from glomeruli.

View Article and Find Full Text PDF

Shahzad et al. examined the underlying mechanisms of sterile inflammation in diabetic kidney disease, specifically the role of NLRP3 inflammasome activation in podocytes. Using mouse models with gain-of-function and loss-of-function mutations in podocyte Nlrp3, or caspase-1 loss-of-function mutations in podocytes, they identified that Nlrp3 activation in these cells is central for development of diabetic kidney disease but not solely dependent on canonical mechanisms and caspase-1.

View Article and Find Full Text PDF

Menon et al. report cell-specific transcriptional changes in podocytes and glomerular endothelial cells that indicate cell stress and increased bidirectional crosstalk among these cells in apparently healthy human allografts. They identified common and independent podocytes and glomerular endothelial cell-specific responses in nondiabetic and diabetic transplant recipients, as well as parallels in genes related to podocyte and glomerular endothelial cell stress in experimental focal segmental glomerular sclerosis.

View Article and Find Full Text PDF

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity.

View Article and Find Full Text PDF

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity.

View Article and Find Full Text PDF

Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB).

View Article and Find Full Text PDF

The glomerulus is a compact cluster of capillaries responsible for blood filtration and initiating urine production in the renal nephrons. A trilaminar structure in the capillary wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched and fenestrated endothelial cells adhering to the glomerular basement membrane and specialized visceral epithelial cells, podocytes, forming the outermost layer with a molecular slit diaphragm between their interdigitating foot processes. The unique dynamic and selective nature of blood filtration to produce urine requires the functionality of each of the GFB components, and hence, mimicking the glomerular filter has been challenging, though critical for various research applications and drug screening.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), with prevalence increasing at an alarming rate worldwide and today, there are no known cures. The pathogenesis of DKD is complex, influenced by genetics and the environment. However, the underlying molecular mechanisms that contribute to DKD risk in about one-third of diabetics are still poorly understood.

View Article and Find Full Text PDF

Background: In the setting of diabetes mellitus, mitochondrial dysfunction and oxidative stress are important pathogenic mechanisms causing end organ damage, including diabetic kidney disease (DKD), but mechanistic understanding at a cellular level remains obscure. In mouse models of DKD, glomerular endothelial cell (GEC) dysfunction precedes albuminuria and contributes to neighboring podocyte dysfunction, implicating GECs in breakdown of the glomerular filtration barrier. In the following studies we wished to explore the cellular mechanisms by which GECs become dysfunctional in the diabetic milieu, and the impact to neighboring podocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that interactions between glomerular cells can lead to defects in kidney filtration barriers, particularly in conditions like podocytopathy and Adriamycin nephropathy.
  • Researchers found that degradation of the endothelial surface layer and albumin leakage occurred before damage to podocyte structures, which can be prevented by specific drug treatments targeting endothelin receptor-A and reactive oxygen species.
  • The findings suggest that activated podocytes release factors that provoke damage in glomerular endothelial cells, implicating the endothelin-1 pathway in the progression of certain kidney diseases.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9gm0493o2ngte75o2old54jt0ejakrpd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once