The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing.
View Article and Find Full Text PDFRespiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful and blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway.
View Article and Find Full Text PDFGlucocorticoids (GCs) act via the glucocorticoid receptor (NR3C1, GRα) to combat overshooting responses to infectious stimuli, including lipopolysaccharide (LPS). As such, GCs inhibit the activity of downstream effector cytokines, such as tumor necrosis factor (TNF). PPARα (NR1C1) is a nuclear receptor described to function on the crossroad between lipid metabolism and control of inflammation.
View Article and Find Full Text PDFGlucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs.
View Article and Find Full Text PDFCoregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) support cancer growth, invasion, and metastasis. Glucocorticoids (GCs), drugs often administered together with chemotherapy, are steroidal ligands of the glucocorticoid receptor (GR), a transcription factor which upon activation regulates expression of multiple genes involved in suppression of inflammation. We have previously shown that in dexamethasone (Dex)-treated CAFs derived from colon cancer, production and secretion of several factors related to cancer progression, such as tenascin C (TNC) and hepatocyte growth factor (HGF), were strongly suppressed.
View Article and Find Full Text PDFHistorically, the word cancer is derived from the Latin cancer, as the red swollen arteries near a tumor reminded the physician Galenus and his fellow Romans of a red crab. Currently, cancer remains the disease to beat as it remains a leading cause of death worldwide (WHO). Tumors do not simply consist of cancer cells, as they can recruit normal cells, which will form the tumor-associated stroma.
View Article and Find Full Text PDFAngiogenesis is important in cancer progression and can be influenced by tumor-associated myofibroblasts. We addressed the hypothesis that glucocorticoids indirectly affect angiogenesis by altering the release of pro-angiogenic factors from colon cancer-derived myofibroblasts. Our study shows that glucocorticoids reduced prostanoids, urokinase-type plasminogen activator (uPA) and angiopoietin-like protein-2 (ANGPTL2) levels, but increased angiogenin (ANG) in supernatant from human CT5.
View Article and Find Full Text PDFAlthough adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies.
View Article and Find Full Text PDFSince the 1950s, glucocorticoids (GCs) have been a mainstay therapy for acute and chronic inflammatory disorders, although adverse effects limit their chronic use. Following the notion that the anti-inflammatory therapeutic and metabolic endocrine adverse effects of GCs may be based on different glucocorticoid receptor (GR)-dependent mechanisms, subsequent attempts to separate these mechanisms by trying to develop selective GR agonists and modulators (SEGRAMs) with an improved therapeutic benefit have yielded only a few molecules effective in clinical use. Recent new insights into the pro- and anti-inflammatory activities of GR support a more sophisticated drug discovery model.
View Article and Find Full Text PDFGlucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword with beneficial therapeutic actions alongside adverse effects, mainly in metabolic regulation. Considerable efforts were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions and to minimize adverse metabolic actions. Most attention has focused on the development of novel compounds favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions.
View Article and Find Full Text PDFBackground: Glucocorticoid Receptor agonists, particularly classic glucocorticoids, are the mainstay among treatment protocols for various chronic inflammatory disorders, including nasal disease. To steer away from steroid-induced side effects, novel GR modulators exhibiting a more favorable therapeutic profile remain actively sought after. Currently, the impact of 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride a plant-derived selective glucocorticoid receptor modulator named compound A, on cytokine production in ex vivo human immune cells and tissue has scarcely been evaluated.
View Article and Find Full Text PDFThe glucocorticoid receptor functions as a ligand-dependent transcription factor that positively or negatively regulates the transcription of various specific target genes. Not only steroidal glucocorticoids can bind and activate the glucocorticoid receptor, but also the intensively examined non-steroidal selective glucocorticoid receptor modulators can do so, albeit with a select effector profile skewed to glucocorticoid receptor transrepression. Glucocorticoids are widely used to treat inflammatory afflictions, but also as anti-cancer therapies or adjuvants thereof.
View Article and Find Full Text PDFThe Microarray Assay for Realtime Coregulator-Nuclear receptor Interaction (MARCoNI) technology allows the identification of nuclear receptor-coregulator interactions via flow-through microarrays. As such, differences in the coregulator profile between distinct nuclear receptors or of a single receptor in agonist or antagonist mode can be investigated, even in a single run. In this chapter, the method how to perform these peptide microarrays with cell lysates containing the overexpressed glucocorticoid receptor is described, as well as the influence of assay parameters, variations to the protocol, and data analysis.
View Article and Find Full Text PDFWithaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations.
View Article and Find Full Text PDFCompound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression.
View Article and Find Full Text PDFThe glucocorticoid receptor is a nuclear receptor, and can be activated by glucocorticoid ligands. Mitogen- and stress-activated protein kinase (MSK1), when activated by p38 and ERK mitogen-activated protein kinases (MAPKs), plays a major role in chromatin relaxation via phosphorylation of histone H3 S10. The glucocorticoid receptor can target MSK1 as part of its anti-inflammatory mechanism.
View Article and Find Full Text PDFGlucocorticoids (GCs) block inflammation via interference of the liganded glucocorticoid receptor (GR) with the activity of pro-inflammatory transcription factors NF-κB and AP-1, a mechanism known as transrepression. This mechanism is believed to involve the activity of GR monomers. Here, we explored how the GR monomer-favoring Compound A (CpdA) affects AP-1 activation and activity.
View Article and Find Full Text PDFThe activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself.
View Article and Find Full Text PDFThe process of B-cell development is characterized by the activation of the unfolded protein response. Under certain circumstances, the unfolded protein response can be manipulated in a cell death-inducing way. Therefore, tackling the unfolded protein response might be an attractive strategy in the treatment of diffuse large B-cell lymphomas.
View Article and Find Full Text PDFIt has been known for several decades that cyclic AMP (cAMP), a prototypical second messenger, transducing the action of a variety of G-protein-coupled receptor ligands, has potent immunosuppressive and anti-inflammatory actions. These actions have been attributed in part to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB plays a crucial role in switching on the gene expression of a plethora of inflammatory and immune mediators, and as such is one of the master regulators of the immune response and a key target for anti-inflammatory drug design.
View Article and Find Full Text PDFTrends Endocrinol Metab
August 2011
The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can bind to glucocorticoids (GCs). Upon ligand binding, GR sheds its cytoplasmic chaperoning complex and translocates to the nucleus, where it can act as a ligand-dependent transcription factor, transactivating or transrepressing specific gene promoters. Often, GR interacts with specific cofactors to implement a variety of gene promoter effects.
View Article and Find Full Text PDFThe search for novel glucocorticoid receptor (GR) modulators with similar anti-inflammatory properties as conventional steroids, but with a reduction in the number or severity of the side effects has been a long-standing goal, and still remains a challenge today. The quest for these so-called 'dissociated GR ligands' is mainly based on the hypothesis that the occurrence of undesirable side effects is mostly associated with GR-mediated transactivation, whereas transrepression of many pro-inflammatory genes (e.g.
View Article and Find Full Text PDFGlucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms.
View Article and Find Full Text PDF